
Prometheus
v1.2

From Tesseract Software Solutions
Created by Jason Cohen

Copyright © 1995 Tesseract Software Solutions

Prometheus is a programming language specially designed for logic, mathematics, and artificial
intelligence. It contains elements from C, Pascal, LISP, and Prolog, but has many novel features. It is
high-level and very weakly typed. Some highlights of Prometheus are:

• flexible syntax — functions and operators can be entered in LISP or C/Pascal style, functions
with one argument can omit parenthesis, free use of whitespace, implicit multiplication.

• extensive mathematical simplification, calculation, expansion, collection, and transformation,
both numeric and symbolic, complete with arbitrary size integers, reals, imaginaries,
fractions, constants, variables, vectors, matrices, and functions. All 24 trig functions both
circular and hyperbolic, special matrix, vector, and number theory functions. Symbolic
differentiation, integration, and differential equations. Set theory, logics, statistics,
probability, combinations.

• easy list processing (general, stacks, and queues), string processing, and I/O with console,
files, and scripts.

• smart operators — operators will work without error on any of the data types, operators can
be used in an intuitive manner: the expression "a<b<c" means a is less then b which is less
then c, "5!" means 5 factorial.

• variables can take on a variety of values, from the usual assignment, to holding the names of
other variables along with expressions, to dynamic values which change as other variables
change. Variables don’t need declaration, and there is automatic garbage collection.

• output in LISP, Prometheus, or mathematical format. Also output C++ source, fully functional
with given source and libraries.

• portable across many platforms.
• 170 functions, over 350 simplification rules

In general, Prometheus should be used for problems which involve:

list processing string processing symbolic math logic
vectors matrices AI number theory

1

Table Of Contents
Elements..4

Basics..4
Operators...4
Numbers..4
Infinity..6
Vectors, Matrices, and Lists..6
Constants...7
Variables..7
Truth..8
Strings...9
Sets..9

Mathematics...10
Overview...10
Arithmetic...10
Algebra..10
Transcendental Functions..11
Logic...11
Probability...11
Number Theory...12
Vectors and Matrices...12
Functions...14
Calculus..14
Other Functions...14

Programming..16
Overview...16
Environment..16
Scripts...16
Console I/O...17
File I/O..17
Del...19
User Stack...19
Swap...19
Calc...19
Expd..20
Simp..20
For-Loop...20
Bag..21
If-Then-Else..21
Blocking..22
Comments...22
Implicit Assignment..22

List and String Processing...23
Overview...23
Adding Elements...23
Deleting Elements...23

2

Splitting and Combining Elements..24
Searching Elements...24
Miscellaneous Operators...25

Packages..26
Overview...26

3

Fibonacci and Factorial Packages...26
Other Packages..26

Porting...27
Overview...27
Porting from LISP...27
Porting to C++...27

Operators..29
Properties..29
Command Summary..29
Order of Precedence..33
Simplification Rules..33
Technical Reference..39

Case Study..41
Writer/Contributor Information and Bibliography.......................................48

4

Elements
Basics

When running Prometheus, you have a window that lets you type input and receive output. This
window is called the command console. The line in which text is entered is called the command line.
If you enter something there and press return, the text is input to Prometheus. On Macintosh
computers, you may use the mouse to move the insertion point, select text, and even use the clipboard.

The style and syntax of Prometheus are very easy to understand and use. For example, “1+2”
means one plus two, and “csch -.5” is the hyperbolic cosecant of negative one half. For a few examples
of the computational power of Prometheus, which also demonstrates its unique display capability, type
“run "ex"” at the command line. The best way to get started is just to dive into the manual and the
program simultaneously, running the examples, and exploring the program. It’s never a bad idea to
experiment on the command line and explore possibilities. Remember, if you want to know how
Prometheus will handle a particular expression, just type it into the command line and see what
happens. It’s easier, faster, and more accurate then any manual. You can’t inadvertently do any
damage, so feel free to explore.

Operators
As the name suggests, operators operate on inputs and return outputs. Their usage is intuitive

and where applicable reflects the operators found in mathematics. Some operators are used between
the inputs (also known as arguments and parameters) like “1+2” and are called in-fix. Some come
before the argument like “neg(2)” and are called pre-fix. Some come after, such as “(5)!”, and they are
called post-fix. Pre- and post-fix operators enclose their arguments in parenthesis as the examples
show. However, if the operator takes only one argument, then the parentheses can be omitted, e.g. “neg
2” and “5!”. This emulates mathematical style. If there are no arguments, then parentheses can be
empty “()” or omitted. For more then one parameter, parentheses must exist, and the arguments are
separated by spaces. The only exception is if the command is the first on the command line, in which
case those parentheses may be omitted. The identifying feature of the operator (i.e. “+” and “!” and
“neg”) is called the operator name, or symbol.

You may also enter operators in LISP style. This style has parentheses that are never optional,.
Also, the operator name must be the first element with the arguments following. For example, “(neg
2)” is equivalent to “neg(2)” and “neg 2”, and “(+ 1 2 3)” is the same as “1+2+3”, and “(! 5)” is equal
to “5!”. “(+ 1)” results in “1” and “(+)” results in “[]”. This special symbol crops up in many different
places and is called the null. It means “nothing” or “not applicable” or “undefined.” It does not mean
null set. However, a null set does exist in Prometheus, and it is covered in the Sets section. In the
expression “(+)”, Prometheus doesn’t know what value to return, so it returns null. You may mix LISP
and regular style syntax; therefore, “(+ a b * c d)” is equivalent to “a + b * c + d”.

Prometheus has 149 operators that are applicable to mathematics, logic, list and string
processing, and file and console I/O.

Numbers
A number in Prometheus is the same as a number in mathematics. There are integers, reals,

fractions, and complex numbers. This section will describe each in that order.

5

To enter an integer, simply type the number. For example, “7” and “-314159” are integers. In
Prometheus, integers may grow to any size, limited only by available memory. However when
calculations get to be more then several thousand digits long, performance is noticeably lower. The
basic arithmetic operators for numbers include addition (+), subtraction (-), multiplication (*), division
(/), and exponentiation (^). Try typing expressions involving these operators and numbers. You may
use parenthesis in the regular mathematical way. Prometheus maintains the standard mathematical
order of precedence so that “2+2*2” is evaluated as 6, not 8. A table containing the order of
precedence for every operator can be found in the Order of Precedence section. Negative signs can be
used freely and Prometheus will understand what is meant. For example, “--1” is “1”, “---1” is “-1”,
etc., “1-1” is 0, “1--1” is 2, and “-1--1” is 0. Also, you can use the neg operator to produce a negative
and the inv operator to produce an arithmetic inverse. For example, “neg 2” is “-2” and “inv 5” is
“0.2”.

Reals are entered exactly they way they look on paper. “3.2”, “-.2”, “0.5”, and “4.” are all reals.
Notice that an integer followed by a decimal point is a real. Unlike integers, reals cannot grow to any
size. Reals have at least 10 digits of accuracy—usually about 15, the exact number determined by your
computer; more on this momentarily—and they can range from about 10308 to -10308. Arithmetic with
reals works the same way as integers. Executing operations on reals is faster then with integers, but
reals are limited in accuracy and size. If you mix reals and integers, the result will be real. Therefore,
“3.2+2” is the real “5.2” and “3.+2” is the real “5”. Also, “3.5+0.5” is the real “4”. If you type “1/3”
you see the decimal expansion of one third. The number of digits displayed for irrationals and
repeating rationals depends on the precision of your computer. When Prometheus starts up, it displays
the precision as the smallest number x such that 1.0+x is not equal to 1.0. The quantity x is known as
the eps. At startup, Prometheus displays the eps, the square root of the eps, and the maximum number
of digits that will be displayed. See the Calc section of the Programming chapter for information about
how to access the eps in your calculations. Also, if there are more digits than can be displayed, the last
digit is rounded.

If you type “e” and another integer immediately after an integer or a real, then the “e” means
“times ten to the”. Therefore, “1234e52” means 1234 followed by 54 zeros, “1234e-2” means “12.34”,
and “1.42e7” means “1.42 times ten to the 7” or “14200000”. Reals will be displayed in this scientific
notation if the number is too big or small to fully display with the maximum number of digits.

Fractions are built with the back-slash (\) operator. They work just like mathematical fractions.
Therefore, “3/2” is “1.5”, but “3\2” is the fraction three halves. Try using the operators on the
fractions, e.g. “1+3\2” yields “5\2”. Fractions can contain any expression in the numerator and
denominator. To illustrate, try “(1 \ 2) \ 3” and “1 \ (2 \ 3)”. You can access the numerator and the
denominator of fractions with the record operator whose symbol is the period. The numerator is
accessed like “(2\3).a” and the denominator like “(2\3).b”. The outputs of these two examples are “2”
and “3” respectively. The terms “a” and “b” are called indices.

Complex numbers are of the form a + b * i where i is the square root of -1. They are written in
Prometheus as “(a , b)”. Any expression can be substituted for a and b. Therefore, “(0,1)” is equal to i,
“(1,0)” is equal to 1, and “(2,-3)” is equal to 2-3i. Try typing “i” at the command line. This
demonstrates that Prometheus uses the letter i as a short cut to typing “(0,1)”. Also, “(2,3)” is
equivalent to “2+3*i”, and since Prometheus understands implicit multiplication, “2+3i”. Again, all
operators work on complex numbers exactly as mathematics dictates. You can access the real and
imaginary parts of complex numbers with the record operator in the same way that numerator and
denominator are accessed in fractions. In the case of complex numbers, the “a” means the real, and the
“b” means the imaginary part.

6

As you work with longer calculations, you will find it useful to get the last expression that was
evaluated. This is possible with the “last” operator which takes no arguments. Variables and scripts,
both of which are covered in later sections, let you make extensive calculations more swiftly,
efficiently, and easily then if you entered expressions one at a time at the command line.

Infinity
Infinity is represented as the letters “INF”. Negative infinity is simply “-INF”. All of the

functions and operators work with infinities without error. For example, “INF+2+3” yields “INF”,
“INF-INF” remains unchanged because it is not defined, “inv INF” equals “0” and “1/0” is “INF”.

Vectors, Matrices, and Lists
In Prometheus, vectors, matrices, and lists are all manifestations of the same entity. To create

one, use brackets to enclose, and spaces to separate, the elements. For example, for the vector [2,3]
you type “[2 3]”. You may also use parenthesis like “(2 3)”. In general, however, you will want to use
the brackets for clarity. Also, “((2 3))” is the same as “[2 3]”, although “[[2 3]]” is not because
parenthesis are primarily grouping symbols, and only secondarily substitutes for brackets. Matrices are
vectors that contain vectors as elements. For example, type “[[1 2 3] [4 5 6]]” at the command line and
observe the results. If a vector contains vectors of unequal lengths or a mixture of vectors and non-
vectors, then the entity is called a vector. Type “[[[[a b] [c d]] pi \ 4352] [[f (g , h)] 7]]” for an example
of complicated vector and matrix usage. A list is just another name for a vector. The difference is
conceptual; a vector is mathematical whereas a list is general. However syntax is identical, and
Prometheus does not differentiate between the two.

As always, all operators work on vectors and matrices. Try “1+[1 2 3 4]” and “[1 2]-[3 4]” and
“[1 2 3]+[4 5]” and “2[1 2 3]” and “inv [1 2 3]” and “inv [[1 2] [3 4]]” and “[[1 2] [3 4]] / [[1 2] [3 4]]”
for some examples.

You can access an element in a vector with the record operator. Instead of letters as indices, use
integers to specify the number of the element you want. The elements are numbered starting with 1.
For example, “[[1 2] [3 4]].2” is “[3 4]”. You can pile up record operators to access specific elements,
so “[[1 2] [3 4]].2.1” is “3”. This also works with fractions and complex numbers, so “[[1 (2,3)] [4
5]].1.2.a” is “2” and “([1 2],[3 4]).b.2” is “4”. Alternatively, all the arguments you were piling up can
be put into a vector, so “[[1 2] [3 4]].[2 1]” is equivalent to “[[1 2] [3 4]].2.1”. Also, you can specify a
range of elements using the range “..” operator. For example, “[2 4 6 8 10].(2..4)” would be “[4 6 8]”.
Note the parenthesis around the range operator. That is needed for order of precedence, which is listed
in the Order of Precedence section. If you specify elements that are out of range, then Prometheus
accepts and pretends you were in bounds. For example, “[2 4 6].(-2..2)” is the same as “[2 4 6].(1..2)”,
and “[2 4 6].(2..500)” is the same as “[2 4 6].(2..3)”. You can get the number of elements in a vector by
supplying it to the “size” operator.

Rows of a matrix can be accessed using the record operator, but columns can not. For column
extraction, use the col operator. The two arguments it takes are the matrix and the column number.
You may give a range as the column number. If the matrix has unequal numbers of elements in each
row, gaps may appear in the column. In that case, null will be substituted for the gap.

7

Constants
A constant in Prometheus is equivalent to a constant in mathematics; it is a place holder for an

unchanging value. A constant is a one word identifier that can include lower and upper case letters, the
underscore, and the single quote (e.g. a b' hi_there SeeThisConstant). Case is significant, so
HowAreYou and howAreYou are different. Constants are used for identifiers, labels, and for working
symbolically with mathematical expressions. It is possible to give constants values, and that is covered
in the next section.

Some words are not constants. For example, “TRUE” is the truth value True, not a constant
called “TRUE”. FALSE, i, and INF are other examples of non-constants. However, function names
are constants.

Typing a constant at the command line shows that constants don’t change in evaluation. Type “a
+ b” and note the result. Then try “b + a”. This demonstrates that Prometheus understands the
commutative property of addition. Try “1+2+a” and “1+a+2”. To see some other examples of
Prometheus simplification, try “--a”, “0+a”, “a + b - a”, and “a + a”. More complex examples include
“a ^ n * a ^ m” and “a+[[b c] [d e]]”. Prometheus simplifies in these and other ways with all data
types, but often constants are used to demonstrate and explore the simplification. You can use
constants to derive formulas. For example, to see the formula for the inverse of a 4x4 matrix, type in
“inv [[a b c d] [e f g h] [j k l p] [q w z x]]”. Of course, you can use any constant names you wish. You
can use constants anywhere in expressions, even in fractions and complex numbers. Try “cos(a , b)”
and “(a , b)^c” and “(a * b * c)\(c * d)”.

Variables
A variable is a constant which has a value. It is useful for holding values in an organized

fashion for later use. A variable has two parts: the name and the value. The name is a way of
specifying which variable you are referring to, while the value is the data the variable contains. The
values can be any expression at all. If you use a variable name in an expression, the value is substituted
before the expression is evaluated. Initially, the are no variables.

Now enter “a = 4” into the command line. This makes the constant a turn into a variable
containg the value 4. This command introduces the “=“ or assignment operator. This is the same
construct as the C/C++ variable assignment. The assignment operator takes the expression on the right
and assigns it to the variable on the left. Notice that the value for the variable is returned. This allows
such statements as “a = b = hi” meaning both a and b are assigned the constant “hi”. If you try typing
“a” at the command line after “a = 4”, the value 4 is returned. “a+1” yields 5. Anywhere “a” appears,
4 is substituted. You can make a have a different value by reassigning it using the assignment operator.
For example, to make a be the vector [b c] type “a = [b c]”.

Give values to several variables. Then type “vars” at the command line. A list of all the variable
names and values is returned. It may seem strange that the variable names were returned without their
values substituted. This demonstrates another facet of Prometheus: sometimes variable values are not
substituted. For example, the assignment operator does not substitute values for the left side of the
operator. Doing so would obscure the variable you are referring to! Variable names on the right side of
the assignment operator are substituted. In general, substitutions will occur unless you explicitly tell
Prometheus to not make them.

It is okay to use a variable on both sides of the assignment operator. That is, “a = a+1” and even
“a = a” are acceptable. This works because the right side is evaluated first, and then the result is
assigned.

8

Assignment is static. This means that once a value is assigned to a variable, it won’t change
until you explicitly change it with the assignment operator. Sometimes, however, dynamic values are
more useful. For example, let’s say you wanted to represent the function y = x2-9. If you type “x = 2”
and then “y = x^2-9”, then y will have the value -5. If we then type “x = 4” and evaluate y, we find that
y is still -5. But we want to link x to y so that y changes to reflect x—that is, you don’t want to retype
“y = x^2-9” every time x changes. Type “y := x^2-9”. Now y evaluates to 7. Type “x = 3” and y
evaluates to 0. The new operator we used is called the definition operator, because rather then
assigning a value, it defines a value. Try the vars command to see what this kind of variable
assignment looks like. With define, the definition is saved without substituting variable values. The
values are substituted when you use the variable, not when it is defined.

Sometimes you need a cross between assign and define. To illustrate, let’s continue with the
above example. Let’s say we want y defined as “x^2-c” where y changes as x changes as before.
However, we want to substitute the value for c right now, not later. We could have this requirement for
many reasons. One is that c might change later but we don’t want that to affect y. Another is that c is
only relevant right now, and the future value of c is unpredictable. To implement y as “x^2-c”, we need
the value function whose name is the number sign (#). In our example, the command would be “y :=
x^2-#c”. Notice we are still using the define operator. The value function tells Prometheus that we
don’t mean the name “c”, but the value itself. You may put a whole expression in the argument to the
value operator and the entire argument will be evaluated. For example, “y := x^2-#(c + d)” takes the
value of c, adds it to the value of d, and then proceeds normally. Using the value operator in an
expression other then the right side of a define operator has no effect, but is not an error. In general, if
at all possible, the value operator should be used in a define statement because it will allow the defined
variable to be evaluated faster, and more simplification can occur. Also, it is good programming
practice to keep variables “free” from define statements so that you don’t set a variable and
inadvertently change another.

With the assign, define, and value operators, you can create statements which evaluate in
complicated, flexible, and useful ways.

Truth
There are two truth types in Prometheus: TRUE and FALSE. They are denoted with capital

letters. Truth is used in logics, relations, and control statements such as if-then-else.
For logics, truth is used as is commonly accepted. The “and”, “or”, and “not” operators work

just like logic dictates. For example, “a and TRUE” is “a” and “a or b or FALSE” is “a or b” and “not
TRUE” is “FALSE”. Not can also be written “~”. The logical constructs are simplified so that the
result is in conjunctive normal form. In this form, we have a group of or’s separated by and’s, with the
not’s distributed to the elements. Therefore, “(a or ~b) and (b or c) and d” is in conjunctive normal
form. “(a and b) or (c and d)” is simplified to “a or c and a or d and b or c and b or d” with order of
precedence making parentheses unnecessary. Some examples showing logical simplification are as
follows: “(a and b) or (a and ~b)” yields “a”, and “p and q or p” yields “p”.

9

Truth is also used in relations. A relation is a statement involving equality, greater then, or less
then. There are six relational operators: equal (==), not equal (<>), less (<), less or equal (<=), greater
(>) and greater or equal (>=). They return TRUE or FALSE according to the arguments given. If you
give it incompatible arguments like “1<a” then nothing happens, unless you are dealing with equality
or inequality. You may combine relational operators as well as supply many parameters. For example,
“a == b == c” means a is equal to b which is equal to c. Equivalent statements would be “(a == b) and
(b == c)” and “(== a b c)”. You can even combine different types, so “a < b >= c = d” means a is less
then b which is greater then or equal to c which is equal to d.

10

Strings
A string is a sequence of characters. It is typed by enclosing the characters in double quotes.

Any characters at all except the double quote may appear in a string. It is used to hold arbitrary text
and data.

The addition, subtraction, and multiplication operators have special results when used with
strings. Addition concatenates two strings, or a string and another expression. For example, “"this " +
"is a test."” results in “"this is a test."”, and “"this" + 42.3” results in “"this42.3"”. Because order is
significant, addition is non-commutative with strings. If you enter “"hi" + 1 + 2 + 3 + 4” you will get
“"hi1234"”, but entering “1 + 2 + 3 + 4 + "hi"” yields “"10hi"“ because of the left to right evaluation.
The empty string “""” is a valid expression, and can be used at the beginning of a set of addition
operators to force everything to be a string.

Subtraction causes every occurrence of a substring to be deleted from a string. For example,
“"this is a test."-" "” yields “"thisisatest."”. Multiplication by a positive integer makes copies of the
string. Multiplication by 1 and 0 is acceptable. Therefore, “10 * "hi"” yields “"hihihihihihihihihihi"”,
and “0"hi"” yields “""”. Notice the implicit multiplication in the latter example.

Two other operators create special strings that are not possible to type except with escape
sequences discussed later in this section. The nl operator returns a string with the return carriage
character, and tb returns a string with the tab character. You may access characters in a string with the
record command exactly like accessing elements in a vector. You can also use the size operator on
strings to get the number of characters in the string.

Prometheus supports C-style escape sequences in strings. An escape sequence starts with the
backslash “\” character and is followed by another character. Together they create a character not
usually possible to type. As an example, "\n" is the carriage return character, and is identical to nl.
Therefore, both "This" + nl + "test" and "This\ntest" produce the same results. The following table
details each escape sequence:

Sequence Result
\\ backslash ("\")
\r carriage return
\n new line (equivalent to \r in the command line, but different

in files.)
\t tab
\v vertical tab (practically obsolete nowadays)
\a alert (rings the bell)
\Any_Number the character specified in octal code
\xAny_Number the character specified in hexadecimal code

Sets
A set is a group of expressions that follows the rules of sets according to standard set theory.

Sets may contain other sets. There cannot be identical elements in a set. Sets are denoted with the
curly braces “{}”. You enter the elements exactly as you would elements in a vector. For example, “{b
c d a}” is a set. “{}” is the empty set. Typing the former example at the command line yields “{ a b c
d }” indicating that the elements are automatically sorted.

If you add two sets, the result is the union of the two sets. Multiplying two sets gives the
intersection. Therefore “{a b c}+{b c d}” yields “{a b c d}”, and “{a b c}*{b c d}” yields “{b c}”.

11

Mathematics
Overview

This chapter covers all of the math–related operators. In general, every operator accepts any
expression and computes and simplifies to the greatest imaginable extent. The sections in this chapter
do not detail the rules of simplification because they are so extensive and complex. See the
Simplification Rules section of the Operator chapter for an austere but complete description of the
simplification rules. This chapter defines the operators and their effects on various data types, and
makes no mention of the automatic simplifications.

It’s never a bad idea to experiment on the command line and explore possibilities. Remember, if
you want to know how Prometheus will handle a particular expression, just type it into the command
line, possibly substituting constants where you want to track the behavior more closely. It’s easier,
faster, and more accurate then any manual.

Arithmetic
The arithmetic operators addition, subtraction, multiplication, division, exponentiation, negation

and inversion have already been covered in the Numbers section of the Elements chapter. This section
describes some other basic arithmetic operators.

Some languages use “**” where Prometheus uses “^”. To aid in translation and increase ease of
use, Prometheus will also recognize the double asterisk as the power operator. However the caret is
always used for display. The “abs” operator takes the absolute value of its input. For vectors the norm
of the vector is returned, and for square matrices the determinant is computed. The “sgn” operator is
the signum function which returns 1 if the input is positive, -1 if it is negative, and 0 if it is 0. The sqr
and sqrt functions are defined for convenience: “sqr x” is the same as “x^2”, and “sqrt x” is the same as
“x^.5”. You can use the “%” command to take the remainder of division. Therefore “5 % 4” is 1
because when you divide 5 by 4 the remainder is 1. You can also think of this as modulus; therefore
the above statements are equivalent to 5 mod 4.

Three additional operators take integers or reals as their argument: floor, ceil, and round. Given
a number, they return the greatest integer less then the given number, the least integer greater then the
given number, and the given number rounded off respectively. Floor is also known as the “greatest
integer” function. In mathematics, “floor x” is often written x⎣ ⎦ and “ceil x” is written x⎡ ⎤. Given
infinities, these operators return infinities. If you supply a second argument, then the result will not be
shifted according to the integers, but according to the given tolerance. For example, “round 3.4” yields
3, but “round 3.4 0.5” yield 3.5. A tolerance of 1 is identical to not supplying the tolerance. The
tolerance is useful for getting rid of excess digits. For example, if you make a computation which has
four significant figures, but after division you get “1.243763452432”, then you could use
“round(1.243763452432 1e-4)” to get the correct answer.

The “sum” operator represents sigma notation for summations. Therefore “sum(k a b f)” means

f
k=a

b
∑ . The second and third parameters do not have to satisfy a ≤ b. Many rules simplify the sum

operator by, for example, taking out factors in the last parameter not related to the variable, and using

formulas for basic summations. The “prod” operator is identical, except “prod(k a b f)” means f
k=a

b
∏ .

12

Algebra
One of the most basic algebra operations is substitution. To substitute all instances of an

expression a with b in an expression c, use “subst(c a b)”. Non-mathematically, this is a search and
replace. It can be useful for simplifiying expressions and substituting variable values.

The isol command isolates an expression in an equation. The equation is formed with any of the
six relational operators ==, <>, >, <, <=, or >=. The expression may be anything. For example, to
isolate the variable x in 1

ln x > 7 you would type “isol(1/ln x > 7 x)” and the result would be

x < e0.142857142857143 . If the expression you are isolating appears more then once in the equation,
the first one found in DFLR order (see the Searching Elements section of the List and String Processing
for details) is isolated. All possible solutions are found, so “isol(x^2==9 x)” yields “x==3 or x==-3”,
“isol(x^3==8 x)” yields “(2==x) or ((-1,1.732050807568877)==x) or ((-1,-1.732050807568877)==x)”,
“isol(abs(x-2)<=14 x)” yields “x<=16 and x>=-12”, and “isol(cos x == y x)” yields “x==2*pi*N+acos
y or x==2*pi*N+-acos y”.

You can use ± in your expressions with the “+-” operator. For example, “3 +- 1” results in “2 or
4”.

Transcendental Functions
Transcendental functions always return real or complex results, and mimic the mathematical

functions directly. There are 24 trig functions and 3 logarithm functions.
The operators “cos”, “sin”, “tan”, “csc”, “sec”, and “cot” work exactly the same as their

mathematical counterparts, i.e., cosine, sine, tangent, cosecant, secant, and cotangent, respectively.
Putting an “a” before each yields the arc, or inverse, function. Appending an “h” to each yields the
hyperbolic function. Both prepending an “a” and appending an “h” is the arc, or inverse hyperbolic
function. They work with complex arguments. The “cis” function is also implemented, so “cis x” is
the same as “cos x + i*sin x”.

The “log” operator takes a base in the first argument and a value for the second, so “log(a b)”
means loga b . The “ln” operator means “natural log” and the “lg” operator means log2 . These work on
complex numbers and accept non-positive reals including 0 (which returns “-INF”).

Logic
Many operators work with the logical operators “and” and “or” to produce useful expressions.

This can be used to combine mathematics with logics for accurate mathematical results. For example,
“a+(b or c)” simplifies to “(a + b) or (a + c)”.

Besides the three logical operators already described (and, or, and not) there are two other
logical operators, “forall” and “exist”. They represent the logical quantifiers ∀ and ∃ respectively. To
represent “∀x: y”, use “forall(x y)”. Exist works in the same manner. Conjunctive normal form
dictates that not’s are distributed into quantifiers, so that “~(forall x y)” results in “(exists x ~y)” and
“not (exists x y)” results in “forall(x ~y)”.

You can also use the imp operator, which means “implies.” The “xand” operator means “this
and not that” and is logically equivalent to “p∧~q”. The “xor” operator means “this is not the same as
that” and is logically equivalent to “(p∨q)∧~(p∧q)”.

The “unify” operator is used in logical deduction. The two arguments are compared, and if any
non-variable quantities don’t match, the operator returns FALSE. Otherwise, the operator returns a list
of variable substitutions that would be necessary to make the expressions equal. This list is not
evaluated, but you can evaluate it yourself with the “#” operator that always takes the value of all
variables. No variables within the unify arguments are evaluated.

13

14

Probability
Probabilities are reals between 0 and 1 inclusive. You can work with them like any number, but

there are some special operators which let you compute with them.
Using the not operator, which can be written as “not” or “~”, you can get complementary

probability. Therefore “~0.25” is “0.75” and “~0.5” is “0.5”. The “&” operator answers the question
“what is the chance that both this and that will happen”. Therefore “0.5 & 0.5” is “0.25” and “0.2 &
0.4” is “0.08”. The “|” operator answers the question “what is the chance that either this or that will
happen.” Therefore “0.5 | 0.5” is “0.75” and “0.2 | 0.4” is “0.52”. The imp operator answers the
question, “what is the probability that if this is true then that is true.”

The factorial operator “!” comes after the argument as it does in math. “5!” is 120, and “0!” is 1.
Currently, factorials work only on integers, both positive and negative, and on 0. With the Factorials
Package loaded, large factorials like “1000!” will be computed very quickly. See the Package chapter
for information concerning packages. Closely related are the nPr and nCr operators that compute
permutations and combinations. For example, “5 nPr 3” is “20”, and “5 nCr 3” is “10”. The gamma
function is defined as Γ(x) = t x−1e−tdt0

∞
∫ , x > 0 , or alternatively Γ(x +1) = x! , and is computed by

the “gamma” operator. You will get a maximum of 5 decimal places of accuracy, that number
decreasing as the argument to the gamma operator increases. See the Technical Reference section of
the Operators chapter for more information about gamma.

The erf operator is the error function defined as “erf x = P(0.5,x)” where P is the incomplete
gamma function. The cerf operator returns the complementary error function defined as “cerf x = 1-erf
x”. Always use “cerf” in place of “1-erf” because it is much faster.

Statistics
There are several operators which let you run statistical tests and find statistical parameters from

a list of data.
If you supply a list as the sole parameter to “sum”, it will add up the elements of the list. So

“sum [a 1 b 2 a 3]” yields “6+b+2*a”. Similarly, “prod” will multiply the elements of a list. The “size”
command returns the number of elements in a list. To average the elements of a list, supply it to the
“avg” operator. Variance and standard deviation are computed with “var” and “std” respectivly.

Number Theory
Prometheus’s arbitrary length integers and complex simplification methods are especially suited

to the exploration of number theory. Several functions from number theory are provided, all of which
facilitate working with both integers and expressions.

With the “factor” operator, you can factor expressions into prime factors. The factors are
returned in a list in ascending order. The number “1” is never included, but if the number supplied is
prime, it will be returned. Factoring large numbers may take a long time, and sometimes a factor
returned as prime may in fact not be. Refer to the Technical Reference section of the Operators chapter
for more information. The “gcd” operator returns the greatest common divisor of the two arguments,
and the “lcm” operator returns their least common multiple. These operators facilitate working with
integers or expressions. Therefore, “gcd(a ^ b a ^ c)” results in “a ^ min(b c)” and “lcm(a ^ b a ^ c)”
yields “a ^ max(b c)”. You may supply more then two arguments to both gcd and lcm.

15

Vectors and Matrices
All operators work on vectors and matrices in the usual mathematical way. Some, like abs and

inv, are redefined to match their meaning with matrices. Also, there are some special functions which
work only on vectors and matrices to produce certain quantities. You may want to try out some
commands on matrices or vectors, but you don’t want to type in a large set of data. You can use the
genmat command which takes two arguments and returns a generic matrix of those dimensions. For
example, “genmat(2 3)” results in “[[a b c] [d e f]]”.

The inverse operator works for vectors by returning a scalar value that, when multiplied by the
original vector, yields another vector in the same direction as the original, but has a norm of 1. The
inverse operator applied to a square matrix yields the matrix inverse, However, if the determinant of
the matrix is 0 and therefore it does not have an inverse, an inverse is returned anyway with either INF
or -INF in each element. When multiplication is performed on vectors, the inner, or dot, product is
computed.

The “adj” or adjunct operator returns the adjunct of a given square matrix. The “minor”
operator takes a minor of a matrix. For example, “minor([[a b] [c d]] 1 2)” means the minor of “[[a b]
[c d]]” about the first row, and second column, and in this case is “c”. The “trans” operator returns the
transpose of the given matrix. It works correctly on non-square matrices, and even vectors where the
rows are of unequal length. In this case it pads empty cells with null as described about “col” in the
Vectors, Matrices, and Lists section of the Elements chapter.

You can solve augmented matrices with the “saug” operator. It takes an augmented matrix
created form the coefficients of a system linear equations and returns the solutions to the variables as
defined below:

Assume you have a system of n linear equations in n variables. Let x1,x2, ... , xn be the variables,
and the equations be:

a1x1+a2x2+...+anxn=an+1
b1x1+b2x2+...+bnxn=bn+1
...
z1x1+z2x2+...+znxn=zn+1

Then the n by n+1 augmented matrix which corresponds to this system is:

a1 a2 .. . an an+1
b1 b2 .. . bn bn+1

...
z1 z2 .. . zn zn +1

⎡

⎡

 ⎢
⎡
⎡

⎡

⎡

 ⎥
⎡
⎡

The vector x1 x2 .. . xn is returned. If the system is over determined, under determined,
inconsistent, or dependent, then all variables will be set to INF or -INF. You may, of course, include
non-numbers such as constants, variables, and vectors in the augmented matrix, but the solution will
take longer to find. See the Technical Reference section of the Operators chapter for more information
about saug.

16

Functions
The “fzero” operator finds a zero of a function. You specify five parameters: the function in

question, the variable to vary, the lower and upper bound for the zero, and a tolerance. The first two
must not be evaluated. Therefore, they must either contain the literal operator or be passed by a
holding variable. The other three must be integral or real. The tolerance specifies the allowable error.
Therefore, a tolerance of .01 and a result of 4 means the real root could be anywhere from 3.99 to 4.01.
You can use “calc eps” to indicate the smallest possible tolerance. (The calc command is covered in
the Calc section of the Programming chapter.) If there is more then one root in that range, there is no
way to know which will be found. To find the minimum of a function within a given range, use the
“fmin” operator with the same arguments as fzero. If there is more then one minimum in the given
range, there is no way to know which will be found. To find the value of the inverse function, use the
“finv” operator with the same arguments as fzero, but with one exception: after the variable, an
additional argument must be made which is the value of the function. For example, if the function is
“x^2” and the variable is x, and you want to know what value of x will make “x^2” equal to 6, and you
know the answer lies in the range of zero to 10, then use “finv(x^2 x 6 0 10 0.01)” for an answer
accurate to one-tenth. If more then one inverse exists in the given range, there is no way to know
which will be found. The variable you supply to vary will contain the value returned by each of these
three functions. See the Technical Reference section of the Operators chapter for more information
about these three operators.

Calculus
Prometheus allows you to take a semi-numeric limit. It is called semi-numeric because,

although it does not always return the exact limit, the vast majority of the time it does. Also, symbols
can be used in the limit. To take a limit, supply the lim operator the variable, the value to approach,
and the expression to take the limit with. For example, “lim x 3 (x^2 - 9) / (x - 3))” returns 6 and, “lim
x c 1/x” returns “(1/(-1e-05+c)+1/(1e-05+c))*0.5”.

Prometheus is also capable of symbolic differentiation and integration. You use the “der”

operator with the function and variable. For example, “der x ^ c x” means
∂
∂x
x c and results in “c * x

^(-1+c)”. A derivative is defined for every function. Multiple variables are also acceptable. However,
although “der x x” is “1”, “der y x” is 0. To keep partial derivatives (i.e., leave “der y x” unchanged),
use the “pder” operator. If you try to take the derivative of an expression with respect to a non-variable
expression, the result is 0.

To find integrals, use the “intg” operator. For the indefinate integral fdx∫ use “intg(f x)”. The

arbitrary constant is not added to the results of indefinate integration. For the definate integral fdxa
b
∫

use “intg(a b f x)”. Another operator, “range”, is used in conjuction with definate integrals to evaluate
the result: “range(a b f x)” means f]a

b . Of course, you may use the range operator independant from
intg.

Other Functions
Some miscellaneous mathematical functions do not fit nicely into any of the above sections.

They are generally useful for computing special numbers and expressing mathematical statements more
accurately and flexibly.

17

The “fib” operator returns the Fibonacci number of the number given. For example, “fib 0” is
“0”, fib “1” is “1”, and “fib 10” is “55”. If the Fibonacci Package is loaded, large Fibonaccis such as
“fib 4000” can be computed very quickly. See the Package chapter for information concerning
packages.

18

The “max” and “min” operators are maximum and minimum respectively. They can take any
number of parameters.

The “rand” operator returns a random number between 0 and 1 inclusive. See the Technical
Reference section of the Operators chapter for more information about the random number generator.

The “tofrac” operator converts reals to fractions. To use tofrac, provide the real in the first
parameter, and a tolerance (another real) in the second. The function will return a fraction that is within
the tolerance of the given real. Therefore “tofrac(3.1415926 1e-2)” yields “22\7” which is accurate to
1e-2, and “tofrac(3.1415926 1e-6)” yields “355\113” which is accurate to 1e-6. See the Technical
Reference section of the Operators chapter for more information about tofrac.

The “re” and “im” operators take the real and imaginary parts of expressions, respectively.
Although you can use indexing to get at the real and imaginary parts of a complex number, these
operators can extract the same information from any expression. For example, “im(a*b)” simplifies to
“((im a * re b)-(im b * re a))” and “re (a/b)” simplifies to “((im a * im b*1/((im b^2)+(re b^2)))+(1/((im
b^2)+(re b^2))*re a * re b))”.

The “polyfit” command fits a set of data to a polynomial. For n data points given as a list to
polyfit, the coefficients of the polynomial of order n-1 which best fits them are returned as a list. The
first data point is assumed to be the result when the polynomial variable is 0. To set it at some other
value, supply it as the second parameter to polyfit.

19

Programming
Overview

This chapter covers all of the programming–related operators. These include working with files,
interacting with the user, executing loops, and executing if-then statements. Unlike mathematical
operators which are useful in simplification, programming operators are useful in execution.
Mathematical operators compute things while programming operators create the things to compute and
do something with the results. Without programming operators, Prometheus would simply be a
powerful calculator; with them Prometheus is a powerful programming language.

It’s never a bad idea to experiment on the command line and explore possibilities. Remember, if
you want to know how Prometheus will handle a particular expression, just type it into the command
line, possibly substituting constants where you want to track the behavior more closely. It’s easier,
faster, and more accurate then any manual.

With programming operators, it is likely that the operator returns nothing important. For
example, the pause operator waits for the user to press return. There’s no information to return, so
pause returns null. Unless specifically stated, all of the operators in this section return null.

Environment
The environment is a set of values which affect the way Prometheus works. For example, one

determines whether or not Prometheus prints the result of an expression on the screen, and another
determines what style of output Prometheus should use. To see the current state of the environment,
use the “env” operator.

The first environmental control is called the echo. When echo is on, every time Prometheus
evaluates an expression, the result is printed to the screen. The default setting is on. To alter this, use
the “echo” operator that takes one argument and sets the echo accordingly. Use the constants “on” and
“off” or the integers “1” and “0” as arguments.

The second control is the display style. Prometheus can display in three styles: LISP, regular,
and mathematical. The default is mathematical. Use the constants “lisp”, “reg”, and “math” as the
argument to the disp command to change the display type. In general, LISP style prints like a LISP
program, regular prints as you would type it in the command line, and mathematical prints
typographically accurate results within the limitations of text-based art. If the expression would be too
big to fit in the command console, then the regular style is used. The best way to get a feel for the
different styles is to experiment with different expressions in different styles.

The next control is not setable. It is just an indicator of something called the shell level. This
will be discussed in the Scripts section. The fourth control determines wether degrees or radians are
used as angle measure. You set it with the “deg” and “rad” operators which take no arguments. The
default is radians.

The fifth control lets you force Prometheus to execute the “calc” operator on every expression.
For a description of the “calc” operator, see the Calc section of this chapter. The default is off. You set
it with the “acalc” (for auto-calc) command which takes the same argments as “echo”.

Another environment–related operator is “mem”. It returns the number of bytes left in the heap
and stack in a list. Generally, you will only need this to determine how much memory is left in the
heap, that is, how much memory you have to manipulate expressions. Generally at least 100K of
memory should be kept free. If you let Prometheus run without entering expressions, memory will
automatically free up.

20

Scripts
If all you need is a powerful calculator, the command line is sufficient. However, you need

scripts to take advantage of the programming operators, and to save a series of commands for later
revision, reference, and execution. A script is a text file containing one command per line. While
running a script, Prometheus simply steps through and executes each line as if you had typed each one
in the command line. In addition, you can do several other things in a script that are not possible on the
command line.

You can create a script in any text-processing program. Just be sure that the file itself is purely
text. To run a script, use the run operator that takes one argument: a string containing the name of the
script file. Because you supply a string, you may name the file anything at all, as long as double quotes
don’t appear. An example of a script is the “ex” file that contains examples of Prometheus’s display
and computational abilities. Run the script and examine its contents. You will notice that it is okay to
have blank lines. However, for reasons discussed in the Blocking section, it is not okay to put tabs at
the beginning of lines in a script file because the tabs have a special meaning. You can call a script
within another script, i.e., a script file can contain a run command.

If there is a file called “init.p” in the same directory as the Prometheus program, then it is
executed when Prometheus first starts up. If it is missing, nothing happens. You can put initialization
commands here, such as defining your own useful functions or physical constants.

The environmental indicator “shell level” pertains to scripts. It indicates the number of scripts
currently active. Therefore, on the command line, no scripts are running, so the shell level is 0. If you
ran a script which printed the env operator, the shell level would be 1. If you ran another script within
the first and it printed the env operator, the shell level would be 2. However, if you had a script where
the only line was “env”, nothing would be printed because every time you run a script, the environment
is reset to echo off, disp math. When that script finishes, the previous environment is restored.
Therefore, a script containing:

echo on
env

would print the environment. For printing expressions regardless of the state of echo, refer to
the Console I/O section.

Console I/O
This section covers the operators “read” and “print” that read expressions from the keyboard and

print them on the screen, respectively. Also, the pause operator is discussed.
The read command produces a “>” symbol and waits for user input. Whatever the user types is

converted to an expression and simplified just as if it were typed at the command line; the read operator
returns this result. If the user types nothing, null is returned. It is okay to have an expression like “read
+ read”. This will read two expressions from the keyboard and return their sum. It will not be
simplified to “2 * read” and then executed. The reason for this is covered in the Properties section of
the Operators chapter.

“print” displays an expression on the screen according to the current environmental display
setting. You can give any number of arguments to print, and all will be printed in order. Be sure to use
the nl function to get a new line. When you display strings with print, the quotes are not printed unless
the display mode is LISP.

The pause operator takes no arguments. It prints “Paused...” on the screen and waits for the user
to press return before returning. Any other characters typed appear on the screen but are ignored.

21

22

File I/O
You can save and restore expressions as files. This is not the same as scripts, which are covered

in the Scripts section. This section covers files used as storage units for data that must be saved from
session to session. The save operator takes the expression to be saved as the first argument, and a
string of the file name as the second. The open operator takes a string of the file name as a parameter,
and returns the saved expression. You can display any text file with the “disp” command which takes a
file name as a string parameter.

You can also read data from database files, which are files containing data in certain formats.
Each file contains one or more data sets which in turn contains one or more fields. A field is another
name for datum. Prometheus can read database files in three formats: tab-delimited, exact count, and
terminated. Tab-delimited files contain fields separated by tabs and data sets separated by carriage
returns. Exact count files have fields separated by carriage returns, and there is no separation between
data sets. However, there are an equal number of fields in each data set. Terminated files have fields
separated by carriage returns, and data sets are separated by some sort of terminating symbol which is
entered just like a field.

To read a tab-delimited file, use the opendb (for open database) operator which takes the same
arguments as open. It returns a matrix with each row being a data set, and each element in a row being
a field. Each data set can have different numbers of fields. To read exact count files, use the opendb
operator, but supply in the second parameter the number of fields in each data set. The data are
returned in the same manner as tab-delimited files. To read terminated files, supply the terminating
string as a second argument to opendb, and the data are returned in the same manner as tab-delimited
files.

Normally Prometheus returns the data in strings. Sometimes, especially when reading numbers,
you will want to read the data as Prometheus expressions. To do this, you use format specifiers that
specify the type of data you will read in. They are used after the other arguments in opendb. The
constants “r” and “p” are used to mean regular and Prometheus mode, respectively. You use it as
follows: “opendb(“Database” p r p r)” means read the first and third fields in a data set as expressions,
and the second and fourth fields regularly. If there are more format specifiers then fields in a data set,
no error occurs. If there are more fields in a data set then format specifiers, the default is “r”. You can
use format specifiers in any of the opendb forms. Another format specifier is “x”, and using it causes
Prometheus to ignore that field. You can use it to strip unwanted fields to keep memory usage down
and speed up. You can also use “e” which causes that field to be read like “r”, but then exploded as
described in the Splitting and Combining Elements section of the List and String Processing chapter.

Sometimes the database file will not be in one of the standard formats of tab-delimited, exact
count, and terminated. However, the data still have an underlying structure. With the openfm (for
open format) operator, you can specify a complex rule to read in a database file. The arguments are
identical to open, except you have format specifiers. Some of these specifiers are followed by
additional data to tell Prometheus how to handle a field. For example, the “skippast” specifier directs
Prometheus to skip past some data. If it is followed by an integer, then that many characters are
skipped. If it is followed by a string, everything up to and including that string is skipped. This extra
information is called an option. The following table shows the effects of the format specifiers and their
options.

Format S. Option Effect
get integer adds a string to the data set with length specified

string adds a string to the data set with characters up to, but
not including the given string. The given string is then

23

skipped.
skip integer skips a number characters according to the option

string skips characters until a character in the given string is
encountered

skippast string skips characters up to and including the string
STRIPLF none instructs Prometheus to ignore line feeds (use for

documents from DOS or Windows machines)

24

Sometimes, you’ll want to skip over a header. Since openfm cycles through the format
specifiers for each data set just like opendb, you need some way of specifying that some format
specifiers should only be used once. To do that, use the “DATA” specifier to separate the header format
specifiers from the data set specifiers. For example, “openfm("data" skippast "Start Here:\n" DATA get
"\n" get "\n"” skips past all data up to and including “Start Here” and a carriage return. Prometheus
then gets two fields, puts them in a data set, and repeats until the database is exhausted.

You can also write data in database format with the savedb operator. It takes the same
parameters as save, but outputs in one of the three database formats. With no additional parameters, it
writes expressions in tab-delimited format. With an integer third parameter, it writes in exact count
format with the integer being the count; with a string third parameter, it writes in terminated format
with the string as the terminator. Format specifiers do not work with savedb.

Del
This command is used to delete variables and files. You may want to delete a variable to

conserve memory, or clean up the variable list. Deleting variables when you are done with them is not
at all necessary, but it will speed things up. To delete a variable, simply supply the name of the variable
as an argument to del. It is okay to delete variables you have never referred to. To delete any kind of
file from a disk, supply the file name as a string to del. You can also use del to delete elements in a list
or string. See the Deleting Elements section in the List and String Processing chapter.

User Stack
Some operations can be more easily carried out using a stack. This is a FIFO (First In First Out)

list where you “push” expressions onto the stack and “pop” them off. The push command takes any
number of arguments and pushes each in turn onto the user stack. The pop command pops one
expression off the stack and returns it. The stack operator returns a copy of the stack for inspection.

Swap
The swap operator takes either zero or two arguments. With no arguments it switches the top

two expressions on the user stack. With two variable names as arguments, it swaps the values of the
two variables, including weather the variables are assigned, defined, or holding.

25

Calc
The calc operator calculates an expression numerically instead of symbolically. For example,

the constant “pi” is calculated as 3.14159..., and the fraction “3\2” is calculated “1.5”. The calc
operator takes an expression as an argument and calculates it. Some constants get values when they are
included in a calculated expression. The following table summarizes the values:

Constant Calculated Value
e 2.7182818284590452353602874713526624977572… (Napiernian base)
eps machine accuracy (see the Numbers section of the Elements chapter)
euler 0.5772156649015328606065120900824024310422… (Euler’s constant)
phi 1.6180339887498948482045868343656381177203… (golden ratio)
phi' -0.6180339887498948482045868343656381177203… (conjugate golden ratio)
pi 3.14159265359897952384626433832795028841972… (π)

Expd
The expd command expands algebraic expressions. It is mostly useful for expanding

polynomials to integral powers. Therefore, “expd((a+b)^4)” yields “4 * a * b ^ 3 + 4 * b * a ^ 3 + 6 *
a ^ 2 * b ^ 2 + a ^ 4 + b ^ 4”, and “expd((a + b + c)^2)” yields “2 * a * (b + c) + a ^ 2 + 2 * b * c + b
^ 2 + c ^ 2”.

Simp
You can provide additional rules to the simplification process. For example, you may be using

the constants c and d in such a way that c + d will always equal 1. Then you could write a
simplification rule that states “simplify c + d to 1”. Or perhaps c times anything is c. Then you could
write a rule stating “simplify c * anything to be c.” This is done with the simp operator. It takes two
arguments: the first is the expression to look for and the second is the result. In our examples, we could
type “simp(c + d 1)” and “simp(c * ?a c)”. Notice the use of the variable in the second case without the
literal operator. The use of the literal operator would make this mean “simplify c times the variable
name ?a to be c”. Note that ?a in this case does not refer to ?a in the usual sense, since when this rule
executes, you don’t want the variable ?a specifically, but just any value. The simps function returns a
list of the user simplifications. You can see that the ?a was changed to a variable called ?_0001. This
is a generic name that will not conflict with any other variable name.

Currently, user simplification is not fully supported. It works exactly as stated here, but it does
not work in some cases where intuitively it seems that it should. Right now it is good for very simple
rules like “(simp hi there)”; other capabilities are planned. An example of user simplification falling
short of expectations is with the first example being entered, “c + d + e” will be simplified as “1+e”,
but “b + c + d” will not. This will be smoothed out in later versions.

For-Loop
Sometimes you want to do something repetitively. For example, you may want to do something

to each element of a list, or read input from the user an unspecified number of times. This requires the
for-loop. This is a control structure, so called because control of the program is being restructured from
just executing each line in order, to executing some lines many times. You can have one or more
expressions be evaluated many times. This section only covers looping though exactly one expression.
The Blocking section explains how to add more expressions to the loop.

26

The most basic form of the for-loop makes a statement repeat for a specified number of times.
You use the for operator with two arguments: the number of times to repeat which must be an integer,
and the expression to execute. For example, typing “for(10 print "hi")” results in
“"hihihihihihihihihihi"”. If the number of times to repeat is less then one, the statement is not executed.

Usually, you want to loop with a counter. This means you have a variable which is changed
each time the loop goes though one cycle. The counter could be 0 the first time through, then 1, then 2,
etc. up to some point. A more complicated form of the for-loop makes this possible. You give it three
arguments: the first is the variable name which will be the counter, the second is a range of values, and
the third is the expression to be repeated. The range of values is entered with the range operator “..”
which takes two arguments and sets up a range. Therefore, “0..10” means zero to ten, “2.3...4” means
2.3 to .4, and “a .. g” means a to g. Integers, reals, constants, and strings may be used in the range.
Note that the range can go up as in “0..10” or down as in “10..0”. The counter will start at the first
value, and each time the loop finishes executing, the value will be either increased or decreased to the
other end of the range. The loop stops executing when changing the counter again would result in a
value out of range. For numbers, the change is ±1, and for constants and strings the letters go up or
down. For example, typing “for(a aa .. bj (print a nl))” will result in “aa” then “ab” then “ac”, etc., then
“ay” then “az” then “ba” then “bb” etc. to “bj”. After the loop completes, the counter remains in the
vars list, and its value is the last value used in the loop. Continuing our example, after the loop is
complete, a holds the value “bj”. You may change the counter from within the loop.

Many times you will want to loop through the elements in a list. The following example shows
how to use a variation on the for operator to accomplish this. First, here is the listing of code which
prints each element of “[b c d e]” on the screen:

for(a 1..4 (print [b c d e].a nl))

And here it is using the variation:

for(a [b c d e] (print a nl))

As you can see, if you supply a list as the second argument to for, it will loop over that list and
put each element in a. If you change the value of a, it will be reset after the cycle is complete. This
form is especially useful when the list is inside a variable.

Bag
Bag is a variant on for. Instead of throwing away the results after each loop, bag returns them as

a list. This is useful for generating vectors and lists with loops. For example, to return the first 10
squares in a bag, use “bag(k 1..10 k^2)”. To get the general form of the sixth-degree polynomial, use
“[a b c d f g h] * bag(k 6..0 x^k)”.

If-Then-Else
The if-then-else statements are also known as conditional statements because they cause

expressions to be evaluated “on condition”. Like the for-loop, if-then-else is a control structure,
causing certain statements to be executed and others not. You set up statements which say “if so and so
is TRUE, do this” or statements which go further and say “if so and so is TRUE, do this, otherwise do
that.” There can be one or more expressions in the if-then-else statement, but like the For-Loop
section, this section will defer the multi-expression if-then-else to the Blocking section, and concentrate
on single-lined if-then-else constructs.

27

The if operator takes two arguments. The first must evaluate to a truth expression. If the truth
expression is FALSE then the second argument is not executed, otherwise it is. If the argument is not a
truth statement, the second argument is executed. This allows for some functions which return FALSE
if they fail, and a useful expression if they don’t. If directly after that the else operator is present then
its argument is either executed or not in opposition to the if operator. So if the if operator executed its
statement, the else won’t, and vice versa. The else operator is optional, and is undefined if it doesn’t
follow an if statement.

Blocking
Most of the time, only one statement in a control structure is not enough. In that case, you want

to group a bunch of expressions together, and call them one. This is exactly what a list does, and you
could write the expressions in a list, but with many lines that could become unreadable and
unmanageable, especially when some of the lines contain control structures themselves. Therefore, you
want Prometheus to automatically collect a group of lines and make a list out of them. This is called
blocking and it can only be done in a script. To do it, simply indent the lines you want blocked with
tabs, and it will be done. For example,

for 10
print "hi"
print nl

prints “hi” and a return carriage ten times. You may indent multiple times:

if (?a = 2)
for 7

print "hi "
print "there" nl

print "done here" nl
else

print "didn’t go into loop!" nl

and Prometheus will group accordingly. Note how you don’t supply any expression in the last
arguments of the control structures. That construction is only applicable on the command line. You
may include it in scripts, but you cannot use both blocking and the last argument constructs in the same
control structure. You may, however, have a block of only one expression as shown in the above
example.

The reason blocking can only be done in scripts is you cannot enter tabs in the command line,
which is why the tb command is supplied. You may use any number of tabs to indent, but it is common
practice to use only one at a time for readability. Also, it is okay to have blank lines in the middle of a
block — Prometheus will not think you have abandoned the block.

Comments
Sometimes you want to put some text in scripts which is not executed. For example, you may

want to write a reminder or an explanation of a line or some documentation. This text is called a
comment. You can write comments by putting a double slash “//” at the beginning of a line in a script,
and everything on that line will be ignored. Only tabs can appear before the double slashes. Blocking
will not be affected by comments even if tabs on a commented line would normally affect the blocking.

28

Implicit Assignment
Many times you will change the value of a variable using the variable itself. For example, “a =

a+1” or “a = append(a 1)”. Implicit assignment gives you a shortcut to writing these kinds of
statements. With an extra question mark in front of a variable, the entire value of that expression is
assigned to that variable. Therefore the previous two expressions could be written “?a+1” and
“append(?a 1)”. If the variable appears more then once in the expression, then you only have to use the
double question mark once. Using it more times is not an error, but the code will run slightly slower.
You may use implicit assignment with more then one variable in the same expression, and all variables
will take on the value of the expression. For example, “?a + ?b” adds the values in a and b and puts the
result in both a and b.

29

List and String Processing
Overview

Prometheus has a variety of list and string processing commands. Other chapters have covered
some of the operators, and this chapter will not repeat those discussions. If there seams to be a blaring
gap in what you can do, or operators are used in ways you don’t understand, try looking it up in another
chapter. This chapter discusses strings and lists together since most commands work on both.
However, bear in mind that the two are different entities.

It’s never a bad idea to experiment on the command line and explore possibilities. Remember, if
you want to know how Prometheus will handle a particular expression, just type it into the command
line, possibly substituting constants where you want to track the behavior more closely, and see what
happens. It’s easier and faster and more accurate then any manual.

Adding Elements
There are a few ways to add elements to lists and strings. Append and prepend are two

operators which add new elements to the beginning and end of a list. The first argument is the original
list, and any number of arguments can follow. Each argument is appended or prepended to the original
in succession. Therefore “append([a b] c d)” is “[a b c d]” and “append([a b] [c d])” is “[a b [c d]]” and
“prepend([a b] c d)” is “[d c a b]”. If the first argument is not a list, one is created, so “append(a b c)”
is “[a b c]”.

Sometimes a list will be sorted, and you will want to insert new elements in their sorted location.
In that case use the insert command which takes the same arguments as append and prepend, and
inserts the elements into the sorted list. If you use insert on an unsorted list, the elements will be
inserted in an undefined location. Like append and prepend, if you give insert a non-list as the first
argument, a new list will be created. To sort an unsorted list, use the sort command giving the list to be
sorted as an argument.

If you want to insert an element into a particular location in a list, use the put operator with the
same arguments as append and the index to the location in the third argument. This does not replace
the element which is already there, and it will pad elements with null if you specify an index which
doesn’t exist. For example, “put([a b c] d 2)” is “[a d b c]”, and “put([a b c] d 5)” is “[a b c [] d]”. To
place an element in a list at a location replacing the element which is currently there, use the putr
command with the same arguments as put. The index can be any valid index, so “put([[a b] [c d]] e [1
2])” creates “[[a e b] [c d]]”.

Besides the genmat operator described in the Vectors, Matrices, and Lists section of the
Elements chapter, there is the setmat operator that creates a matrix of given dimensions in the first and
second argument, and a value for each cell in the third argument. For example, “setmat(2 3 hi)” results
in “[[hi hi hi] [hi hi hi]]”.

Deleting Elements
You can delete elements with the del command. Supply the list or string in the first argument,

and the index of the element in the second. The index can be any index used with the record operator
including integers, lists of indices, and ranges. You cannot pile up del operators, so “del(del([[a b] [c
d]] 2) 1)” will not delete “c”, but will delete “[c d]” and then delete “a”, leaving “[b]”. Writing “del([[a
b] [c d]] [2 1])” would delete just “c” leaving “[[a b] [d]]”.

Characters in a string can be deleted in the same way. In addition, there is a special operator for
stripping out the punctuation marks in a string. The operator is called strip and you supply a string that
it strips and returns. If you give strip a list, then every element in the list is stripped.

30

If you have a list, you may apply the “unique” operator to it. Unique deletes any identical items
in the list and returns the result. Normally you have only one argument — the list to work on. If the
list is sorted, pass the constant “sorted” as the second parameter, and unique will run much faster.
Unless the order of the elements is important, you should always pass sorted lists to unique as it will
run (n/2)+1 times faster, if n is the number of elements in the list. You can use
“unique(sort(YourListGoesHere) sorted)” to force your list to be sorted.

Splitting and Combining Elements
Many times in string processing you want to work with the words in a phrase or the letters in a

word. To access the words in a phrase, use the explode operator to split it up into words. For example,
“explode "this is a test"” yields “["this" "is" "a" "test"]”. Punctuation is skipped, so “explode "this, is}
a!-=# test?"” yields “["this" "is" "a" "test"]”. If you explode a list, then each element of the list is
exploded. You can explode part of a matrix by supplying an integer argument to explode. For
example, “explode([["a a" "a b"] ["b a" "b b"]] 2)” would explode the second element of each row in
the matrix, so the result would be “[["a a" ["b" "a"]] ["b a" ["b" "b"]]]”. The operator isword returns
TRUE if its argument is a word, and FALSE if not, a word being defined as a string whose exploded
list has only one element, and that element is identical to the original string.

For lists, the flatten operator can be used to unnest lists. For example, “flatten [a [b c] [[d e] f]
[g] h]” would be “[a b c d e f g h]”. You can use the group operator to group elements together by
specifying an index or range as the second parameter. Therefore “group([a b c d] 3)” is “[a b [c] d]”
and “group([a b c d] 2..3)” is “[a [b c] d]”. If you specify ranges that encompass elements that don’t
exist (i.e., accessing element -2 or 20 in a list of 15) then group acts like you were in bounds. For
example, “group([a b c d] -3..15)” would have the same results as “group([a b c d] 1..4)”.

The “subsets” operator generates a list of all subsets of a given list, including the empty list. For
example, “subsets [1 2 3]” returns “[] [1] [1 2] [1 2 3] [1 3] [2] [2 3] [3]”.

Searching Elements
Prometheus provides a fast and easy way to search through expressions. The find operator looks

for an expression called the target in another expression called the search space. If it does not find the
target in the search space, it returns FALSE. Otherwise, it returns a bag which contains the index to the
found item. Therefore, “find(3 [[1 2] [3 4]])” is “[2 1]”. This could be passed as the second parameter
to the record operator. It is sometimes useful to remove the last element of the result of a find and then
access that element, since that is the list which contains the target. If there is more then one occurrence
of the target in the search space, then find returns the first one, determined by DFLR (Depth-First, Left-
Right) order. If you need all of the occurrences, or at least more then one, use the findall operator
which takes the same parameters as find but returns a list of all the locations of the target in the search
space in DFLR order. Search will look in fractions and complex numbers, since it can record their
indices in the results. Also, the search will look inside strings to match the target, and return the range
of the matched text if found. However, it will only look for one occurrence in a string — if the target
appears twice then only the first is returned. To search and replace, use the subst operator defined in
the Algebra section of the Mathematics chapter.

Another seach operator is findelm. Given a list of expressions, this returns a list of all those
expressions which contain the given target. For example, “findelm([[a b] [b c] [c d] [d a]] a)” would
return “[[a b] [d a]]”.

31

Another operator, perm, is useful for finding the permutation vector of a list and a permutation
of that list; i.e., if A is a list, and B is a permutation of that list, then “perm(A B)” returns a list C such
that the ith element of C is the element number in A which equals the ith element in B. Therefore,
“perm([a b c d] [d b c a])” returns “[4 2 3 1]”. If an element in A is duplicated, the first occurance in
DFLR order is used in the result. B may have duplicated elements without error. Also, A and B may
be different lengths, and there can exist elements of A not present in B. If there is an element in B not
in A, null is used as that index.

Miscellaneous Operators
The “rev” operator reverses the order of the elements in a list or characters in a string. Therefore

“rev [a b c d]” results in “[d c b a]”. The “shuffle” operator moves a column of a matrix to the first
column. Therefore “shuffle [[a b c d] [e f g h]] 3” moves the third column to the first yielding “[[c a b
d] [g e f h]]”. This can be used to sort a multi-key matrix with a different order.

The “count” operator returns a matrix in which each row has two elements: the first is an
expression which appears in the argument, and the second is the number of times it appears. The
argument must be sorted or the results will be incorrect. For example, “count [a a a b c c d d e f]”
results in “[[a 3] [b 1] [c 2] [d 2] [e 1] [f 1]”. To sort by frequency, shuffle the result bringing the
second column first, and then sort.

For strings, there are three operators which change capitalization. The upper operator changes
all characters to upper case, lower changes to lower case, and capt capitalizes the first character in the
string, and makes the rest lower case.

32

Packages
Overview

Packages are files which extend the capabilities of Prometheus. They can be large databases of
useful information or data files which Prometheus can exploit to run faster. For example, one package
allows you to access any word in the English language, and another makes factorial computation from
2 to 1000 times faster. Packages are loaded on startup and unloaded at termination. Loading simply
means that Prometheus is aware of their existence and will utilize them. To get Prometheus to load a
package, you must put its file in a directory called “(Packs)”. If this directory does not exist then no
packages are loaded, and packages are never loaded from any other directory. Some packages like
Factorial and Fibonacci create their own files if they do not already exist, but this will only happen if a
“(Packs)” directory already exists. The sections in this chapter explain the purpose of each package.

Fibonacci and Factorial Packages
Although these are separate packages, they work in much the same way. Both enable you to

execute some operations faster, namely getting the nth Fibonacci number or the nth factorial. When
they are loaded, diagnostics are printed detailing the nature of the data. The important thing to note
here is the last piece of information, the QuickSpan. Every time you use a number from zero up
through the QuickSpan, you will get almost instantaneous results. Moving out of that range will begin
to get sluggish, but it is still many times faster then not having the package loaded. Both of these
packages have files associated with them, but you need not worry about them because they are
automatically created for you if they don’t already exist, and if the files are outdated, they are
automatically updated.

Other Packages
There are other packages in which the data are there but the engine to drive the data from within

Prometheus has not yet been established. In future versions of Prometheus, expect packages dealing
with prime numbers, all the English words, a thesaurus, all the male and female names, all of the
homonyms, and many more.

33

Porting
Overview

Porting is the technical term for translating between one computer language and another.
Porting to and from Prometheus is easier then most languages because of the flexible input and output
syntax. This chapter discusses issues involved when porting to and from some of the major languages.

Porting from LISP
Prometheus is intended to replace LISP, and it is one of the easiest porting languages because

Prometheus understands LISP function structure, and can output it as well. The only changes come
with the commands which are unique in LISP. Fortunately, it is possible to express every LISP
command very easily in Prometheus. The following table shows each LISP command, and its
equivalent in LISP:

LISP Command Prometheus Equivalent
(car x) x.1
(cdr x) (del x 1)
(cons x y) (append y x)
(list x y ... z) [x y ... z] or (x y ... z)
nil []
(seq x y) x = y
(reverse x) (rev x)
(zerop x) x == 0
(length x) (size x)
(prine x) (print x)
(print x) (print x nl)
(last x) x.(size x)

Also, Prometheus does everything LISP does and more with the following functions:

append and or not
< > read

Porting to C++
You can port Prometheus scripts to C++, which means you can convert scripts to C++ source

code. The “outc” operator takes the name of a script file in the first argument, and creates a file in the
same location and same name with “.cp” attached to the end. This file contains all the code needed to
run that script with C++ (except for a few files, detailed later). The entire file is ANSI-compliant, so
any compiler should accept it. A function is defined which returns “void” and has no arguments. Its
name is identical to the script file name you supplied to outc. Calling this function will behave exactly
as though “run "FileName"” had been typed on the command line. Even the environment is set up as it
is in Prometheus. All console output uses cout, and all console input uses cin. When translating script
to C++, comments are translated as well and imbedded in the C++ code.

34

Of course, this source code is not sufficient — the entire Prometheus intelligence and
environment must be simulated from within your code. To do this you need two files. One is a library
which contains all of the necessary code. The other is group of header (“.h”) files which lets the output
from “outc” access this code. These files are included in each copy of Prometheus, unless this feature
is not available to that kind of computer. For example, you cannot use this feature on non-Power
Macintoshes because the library file is too large for the 680x0 segment loader to digest.

35

Operators
Properties

All operators have properties which determine how they are typed in, how they work, how many
arguments can be accepted, and general simplification. The following table lists each property and
what it indicates.

Property Description
NUNARY takes no arguments
URNARY takes exactly one argument, degenerates to null with 0.
BINARY takes exactly two arguments, degenerates to null with 1 or 0.
MULNARY takes any number of arguments, degenerates into the argument if

there is only one, and degenerates into null if there is none
FUNCT with another argument type, does not degenerate
ASSOC associative (e.g. a+(b + c)+d = a + b + c + d)
COMMUN commutative (e.g. a + b = b + a)
EVEN even (e.g. (func -x) = (func x)
ODD odd (e.g. (func -x) = -(func x)
SELFOPP inverse of self (e.g. neg neg x = x, inv inv x = x)
POST post-fix
NONEST nesting is gratuitous (e.g. abs abs abs x = abs x)
RTOL evaluate from right to left (e.g. ?a := ?b := 2 evaluates from right to

left so that the 2 is propagated to all variables)
EXECBLE executable. Indicates that, for example, read + read shouldn’t result

in 2 * read.

Also, many functions distribute over lists and the logical connectives “and” and “or.” These
properties are not listed in the Command Summary.

Command Summary
Cmd Properties Description
^ BINARY exponentiation
~ URNARY, SELFOPP logical not, complementary probability
! URNARY, POST factorial
$ URNARY literal
% BINARY modulus
& MULNARY, ASSOC,

COMMUN
probabilistic and (∧)

* MULNARY, ASSOC,
COMMUN

multiplication

+ MULNARY, ASSOC,
COMMUN

addition

, BINARY complex separator
- MULNARY subtraction, arithmetic negation (-x)
. BINARY field specifier
.. BINARY range
/ MULNARY division

36

:= BINARY, RTOL define
; NUNARY row specifier (matrix)
< MULNARY, ASSOC less than
<= MULNARY, ASSOC less than or equal to (≤)
<> MULNARY, ASSOC,

COMMUN
not equal to (≠)

= BINARY, RTOL assign
= MULNARY, ASSOC,

COMMUN
equal to

> MULNARY, ASSOC greater than
>= MULNARY, ASSOC greater that or equal to (≥)
@ URNARY pointer specifier
abs URNARY, EVEN,

NONEST
absolute value

acalc URNARY set the status of auto-calc
acos URNARY arc (inverse) cosine
acosh URNARY arc (inverse) hyperbolic cosine
acot URNARY arc (inverse) cotangent
acoth URNARY, ODD arc (inverse) hyperbolic cotangent
acsc URNARY arc (inverse) cosecant
acsch URNARY, ODD arc (inverse) hyperbolic cosecant
adj URNARY adjunct (matrix)
and MULNARY, ASSOC,

COMMUN
logical and (∧)

append MULNARY, ASSOC,
FUNCT

appends elements to a list

asec URNARY arc (inverse) secant
asech URNARY arc (inverse) hyperbolic secant
asin URNARY, ODD arc (inverse) sine
asinh URNARY, ODD arc (inverse) hyperbolic sine
atan URNARY, ODD arc (inverse) tangent
atanh URNARY, ODD arc (inverse) hyperbolic tangent
avg URNARY average
bag MULNARY fill elements of a list
calc URNARY calculate
capt URNARY capitalize
ceil BINARY, FUNCT computes the ceiling, optionally to a degree
cerf URNARY complementary error function (cerf x = 1-erf x)
cis URNARY cis (cis x = cos x + i*sin x)
col BINARY returns a column of a matrix
cos URNARY, EVEN cosine
cosh URNARY, EVEN hyperbolic cosine
cot URNARY, ODD cotangent
coth URNARY, ODD hyperbolic cotangent
count URNARY, EXECBLE counts consecutive occurrences
csc URNARY, ODD cosecant
csch URNARY, ODD hyperbolic cosecant

37

deg NUNARY change to degrees mode
del URNARY, EXECBLE delete (files, variables, elements)
der BINARY, EXECBLE derivative
disp URNARY display file; change display style
do BINARY performs math on elements of a list
echo URNARY echo
else NUNARY part of if-then-else control structure
env NUNARY environment list
erf URNARY, ODD error function
exec URNARY execute
exist BINARY existential quantifier (∃)
expdApr
18, 2021

EXECBLE algebraic expand

explode URNARY splits elements in a list
factor URNARY factorization
fib URNARY Fibonacci number
find BINARY locates a target in a search space
findall BINARY locates all targets in a search space
finv MULNARY finds the inverse of a function
flatten URNARY flattens elements in a list
floor BINARY, FUNCT computes the floor, optionally to a degree
fmin MULNARY finds the minimum of a function
for MULNARY, FUNCT part of for control structure
forall BINARY universal quantifier (∀)
fuse URNARY combines elements in a list
fzero MULNARY finds the root of a function
gamma URNARY gamma function
gcd BINARY GCD (Greatest Common Divisor)
genmat BINARY generic matrix of constants
group BINARY group elements in a list
i NUNARY short for (0,1)
if URNARY part of if-then-else control structure
im URNARY, ODD imaginary part of an expression
imp BINARY logical implication (→)
insert MULNARY, ASSOC,

FUNCT
inserts elements into a list

intg MULNARY integration
inv URNARY, SELFOPP arithmetic inverse (1/x)
isol BINARY isolate expression
isword URNARY tests if a string is one word
last NUNARY last evaluated result
lcm BINARY LCM (Least Common Multiple)
lg URNARY log base 2
lim MULNARY take a limit
ln URNARY Napiernian log
log BINARY general log
lower URNARY change to lower case

38

max MULNARY, ASSOC,
COMMUN

maximum

mem NUNARY bytes in heap and stack
min MULNARY, ASSOC,

COMMUN
minimum

minor MULNARY minor (matrix)
nCr BINARY combinations
neg URNARY, SELFOPP arithmetic negation (-x)
nl NUNARY new line string
not URNARY, SELFOPP logical not (~)
nPr BINARY permutations
open URNARY, EXECBLE read a saved expression from a file
opendb MULNARY, FUNCT,

EXECBLE
reads from a database file

openfm MULNARY, FUNCT,
EXECBLE

reads from a database file in flexible format

or MULNARY, ASSOC,
COMMUN

logical or (∨)

outc URNARY, EXECBLE converts a script to C++ code
pause NUNARY, EXECBLE wait for user signal
pder BINARY, EXECBLE take partial derivative
perm BINARY find permutation
polyfit BINARY, FUNCT fit polynomial function
pop NUNARY, EXECBLE pop expression off the user stack
prepend MULNARY, ASSOC,

FUNCT
prepends elements to a list

print MULNARY, ASSOC,
FUNCT, EXECBLE

screen output

prod MULNARY product
push MULNARY, ASSOC,

FUNCT, EXECBLE
push expressions onto the user stack

put MULNARY inserts elements in a list
putr MULNARY inserts elements in a list replacing existing

elements
rad NUNARY change to radians mode
rand NUNARY random number between 0 and 1 inclusive
range MULNARY computes ranged result
re URNARY, ODD,

NONEST
real part of an expression

read NUNARY, EXECBLE screen input
rev URNARY, EXECBLE reverses list
rot MULNARY, FUNCT,

EXECBLE
rotate user stack, rotate variable values

round BINARY, FUNCT rounds off, optionally to a degree
run URNARY, EXECBLE execute script
saug URNARY solve augmented matrix
save BINARY, EXECBLE save an expression to a file

39

savedb MULNARY, EXECBLE writes to a database file
sec URNARY, EVEN secant
sech URNARY, EVEN hyperbolic secant
setmat MULNARY creates a matrix with a value in each element
sgn URNARY, ODD,

NONEST
signum function

shuffle BINARY, EXECBLE moves columns of a matrix
simp BINARY, EXECBLE simplification specifier
simps NUNARY user simplification list
sin URNARY, ODD sine
sinh URNARY, ODD hyperbolic sine
sort URNARY sorts a list
sqr URNARY, EVEN arithmetic square
sqrt URNARY square root
stack NUNARY user stack
std URNARY standard deviation
subst MULNARY substitution
subsets URNARY generate subsets
sum MULNARY, EXECBLE summation
swap BINARY, FUNCT,

EXECBLE
swap the top two expressions on the user stack,
swap the contents of two variables

tan URNARY, ODD tangent
tanh URNARY, ODD hyperbolic tangent
tb NUNARY tab string
tofrac BINARY convert real to fraction
trans URNARY, SELFOPP transpose (matrix)
unify BINARY modes ponens unification (logic)
unique URNARY, EXECBLE deletes copies in a list
upper URNARY change to upper case
var URNARY variance
vars NUNARY variable list
xand BINARY logical xand (p∧~q)
xor MULNARY, ASSOC,

COMMUN
logical xor ((p∨q)∧~(p∧q))

\ BINARY fraction specifier
| MULNARY, ASSOC,

COMMUN
probabilistic or (∨)

sumsq URNARY sum the squares of the data
+- MULNARY plus or minus

40

Order of Precedence
Interior of Grouping Symbols (Parenthesis, Brackets, and Braces)
Post-fix Functions
Pre-fix Functions
In-Fix Functions
.
^
* / \ %
+ - +-
== <> > >= < <=
| imp xor xand
&
or
and
,
..
:= =
;

Simplification Rules
1. Notes

1.1. /* this is a comment */
1.2. a = any Expression except INF and -INF
1.3. k = any Integer
1.4. n = any Integer
1.5. m = any Integer
1.6. p = either Integer or Real
1.7. q = either Integer or Real
1.8. ?v = any variable
1.9. anything else = any expression

41

1.10. rules are listed in approximate order of which types are involved
2. Intra Expression

2.1. Fraction
2.1.1. a\b /* where b is negative */ --> (-a)\(-b)
2.1.2. a\1 --> a
2.1.3. a\0 --> INF
2.1.4. (a\b)\c --> a\(b*c)
2.1.5. a\(b\c) --> (a*b)\b
2.1.6. a\a --> 1
2.1.7. (a*b*...*c)\(a*d*...*e) --> (b*...*c)\(d*...*e)
2.1.8. a\(a*d*...*e) --> \(d*...*e)
2.1.9. (a*b*...*c)\a --> (b*...*c)

2.2. Complex
2.2.1. (a,0) --> a
2.2.2. ((a,b),c) --> (a,b+c)
2.2.3. (a,(b,c)) --> (a-c,b)

3. Logical
3.1. not

3.1.1. not TRUE --> FALSE
3.1.2. not FALSE --> TRUE
3.1.3. not (x and ... and y) --> (not x or ... or not y)
3.1.4. not (x or ... or y) --> (not x and ... and not y)
3.1.5. not (forall x y) --> (exists x not y)
3.1.6. not (exists x y) --> (forall x not y)

3.2. and
3.2.1. (and TRUE ...) --> (and ...)
3.2.2. (and FALSE ...) --> FALSE

3.3. or
3.3.1. (or TRUE ...) --> TRUE
3.3.2. (or FALSE ...) --> (or ...)
3.3.3. (or b ... (and x ... y) ... d) --> (or b ... x ... d) and ... and

(or b ... y ... d)
4. Probabilities

4.1. &
4.1.1. TRUE & x --> x
4.1.2. FALSE & x --> FALSE
4.1.3. p & q --> p*q

4.2. |
4.2.1. TRUE | x --> x
4.2.2. FALSE | x --> FALSE
4.2.3. p | q --> p+q-p*q

4.3. not
4.3.1. not p --> -p

5. Arithmetic
5.1. neg

5.1.1. -(-INF) --> INF
5.1.2. -(INF) --> -INF
5.1.3. -(x,y) --> (-x,-y)
5.1.4. -(x\y) --> -x\y
5.1.5. -[x ... y] --> [-x ... -y]
5.1.6. -(x+y+....+z) --> (-x+-y+...+-z)
5.1.7. -(p*x*...*y) --> (-p*x*...*z)
5.1.8. -(x and ... and y) --> -x and ... and -y
5.1.9. -(x or ... or y) --> -x or ... or -y

5.2. inv
5.2.1. 1/0 --> INF
5.2.2. 1/INF --> 0
5.2.3. 1/-INF --> 0
5.2.4. 1/(x,y) --> 1/(x^2+y^2)*(x,-y)
5.2.5. 1/(x\y) --> y\x
5.2.6. 1/[x ... y] -->

5.2.6.1. 1/abs [x ... y] /* if Vector */

42

5.2.6.2. 1/abs [x ... y]*adj trans [x ... y] /* matrix
inverse otherwise */

5.2.7. 1/-x --> -1/x
5.2.8. 1/(x^y) --> x^-y
5.2.9. 1/(x*...*y) --> 1/x * ... * 1/y
5.2.10. 1/(x and ... and y) --> 1/x and ... and 1/y
5.2.11. 1/(x or ... or y) --> 1/x or ... or 1/y

5.3. +
5.3.1. 0+x --> x
5.3.2. -INF+a --> -INF
5.3.3. a+INF --> INF
5.3.4. INF+INF --> INF
5.3.5. -INF+-INF --> -INF
5.3.6. z+(x,y) --> (x+z,y)
5.3.7. (x,y)+(p,q) --> (x+p,y+q)
5.3.8. z+(x\y) --> (x+z*y)\y
5.3.9. x\y+p\q --> (x*q+y*p)\(y*q)
5.3.10. x+"text" --> "xtext" /* x is turned into a string and

prepended */
5.3.11. "text"+x --> "textx" /* x is turned into a string and

appended */
5.3.12. x+[y ... z] --> [x+y ... x+z] /* if x is not a Function */
5.3.13. [x y ... z] + [q r ... w] --> [x+q y+r ... z+w] /* if the

vectors have the same number of elements */
5.3.14. { } + { } --> /* the conjunction of the two sets */
5.3.15. x+x --> 2*x
5.3.16. x+-x --> 0
5.3.17. a*x+x --> x*(a+1)
5.3.18. a*x+-x --> x*(a-1)
5.3.19. a*x+b*x --> x*(a+b)
5.3.20. a*x-b*x --> x*(a-b)

5.4. -
5.4.1. (- x y ... z) --> (+ x -y ... -z)

5.5. *
5.5.1. 0*a --> 0
5.5.2. 1*x --> x
5.5.3. -1*x --> -(x)
5.5.4. -INF*a --> -INF /* unless a<0, in which case INF */
5.5.5. a*INF --> INF /* unless a<0, in which case -INF */
5.5.6. INF*INF --> INF
5.5.7. -INF*-INF --> INF
5.5.8. -INF*INF --> -INF
5.5.9. z*(x,y) --> (x*z,y*z)
5.5.10. (x,y)*(p,q) --> (x*p-y*q,y*p+x*q)
5.5.11. z*(x\y) --> (x*z)\y
5.5.12. x\y*p\q --> (x*p)\(y*q)
5.5.13. n*"text" --> "texttexttext...text" /* text repeated n

times, n>=0 */
5.5.14. x*[y ... z] --> [x*y ... x*z] /* if x is not a Function */
5.5.15. [x y ... z] * [q r ... w] -->

5.5.15.1. x*q + y*r + ... + z*w /* if either is a Vector
*/

5.5.15.2. /* the result of matrix multiplication
otherwise */

5.5.16. { } * { } --> /* the disjunction of the two sets */
5.5.17. x*x --> x^2
5.5.18. x/x --> 1
5.5.19. x^y/x --> x^(y-1)
5.5.20. x*...*-y*...*z --> -(x*...*y*...*z)
5.5.21. x*x^y --> x^(y+1)
5.5.22. x^y*x^z --> x^(y+z)

5.6. /
5.6.1. (/ x y ... z) --> (* x /y ... /z)

5.7. ^
5.7.1. INF^a -->

5.7.1.1. INF /* if a > 0 */

43

5.7.1.2. 0 /* otherwise */
5.7.2. a^INF --> INF /* if a > 0 */
5.7.3. a^-INF --> 0 /* if a > 0 */
5.7.4. 0^a --> 1
5.7.5. 1^a --> 1
5.7.6. a^0 --> 1
5.7.7. x^1 --> x
5.7.8. x^-1 --> /x
5.7.9. (x,y)^z --> sqrt((x^+y^)^z/(z^+(y/x)^))*(z,y/x)
5.7.10. z^(x,y) --> z^x*(cos (y*ln z),sin (y*ln z))
5.7.11. (x\y)^z --> x^z\y^z
5.7.12. (1/x)^y --> x^-y
5.7.13. (x^y)^z --> x^(y*z)
5.7.14. (x*...*y)^z --> x^z*...*y^z
5.7.15. e^ln x --> x
5.7.16. 2^lg x --> x
5.7.17. x^log(x y) --> y
5.7.18. (x and ... and y)^z --> x^z and ... and y^z
5.7.19. (x or ... or y)^z --> x^z or ... or y^z
5.7.20. x^(y and ... and z) --> x^y and ... and x^z
5.7.21. x^(y or ... or z) --> x^y or ... or x^z

6. Algebra
6.1. %

6.1.1. x % 0 --> INF
6.1.2. INF % a --> INF
6.1.3. -INF % a --> -INF
6.1.4. 0 % x --> 0

6.2. abs
6.2.1. abs -INF --> INF
6.2.2. abs (x,y) --> sqrt(x^2+y^2) /* normal */
6.2.3. abs (x\y) --> abs x\y
6.2.4. abs [x ... y] -->

6.2.4.1. sqrt(x^+...+y^) /* if Vector */
6.2.4.2. /* determinant of matrix otherwise */

6.2.5. abs -x --> abs x
6.2.6. abs /x --> /abs x
6.2.7. abs x! --> x!
6.2.8. abs (x*...*y) --> abs x*...*abs y

6.3. sqr
6.3.1. sqr x --> x^2

6.4. sqrt
6.4.1. sqrt x --> x^0.5

6.5. sgn
6.5.1. sgn e --> 1
6.5.2. sgn pi --> 1
6.5.3. sgn phi --> 1
6.5.4. sgn phi' --> -1
6.5.5. sgn euler --> 1
6.5.6. sgn neg x --> -1
6.5.7. sgn abs x --> 1
6.5.8. sgn INF --> 1
6.5.9. sgn -INF --> -1

6.6. floor
6.6.1. floor [x ... y] --> [floor x ... floor y]
6.6.2. floor [x ... y] z --> [floor(x z) ... floor(y z)]

6.7. ceil
6.7.1. ceil [x ... y] --> [ceil x ... ceil y]
6.7.2. ceil [x ... y] z --> [ceil(x z) ... ceil(y z)]

6.8. round
6.8.1. round [x ... y] --> [round x ... round y]
6.8.2. round [x ... y] z --> [round(x z) ... round(y z)]

7. Logarithm

44

7.1. log
7.1.1. log (x 0) --> -INF
7.1.2. log (x x) --> 1
7.1.3. log (y -x) --> (log (y x),pi) /* also works if x < 0 */
7.1.4. log (z x^y) --> y*log (z x)

7.2. lg
7.2.1. lg 0 --> -INF
7.2.2. lg -x --> (lg x,pi) /* also works if x < 0 */
7.2.3. lg (x^y) --> y*lg x

7.3. ln
7.3.1. ln 0 --> -INF
7.3.2. ln e --> 1
7.3.3. ln -x --> (ln x,pi) /* also works if x < 0 */
7.3.4. ln (x,y) --> (ln (x^+y^)/,atan(y/x))
7.3.5. ln (x^y) --> y*ln x

8. Trigonometric
8.1. cos

8.1.1. cos (a,b) --> (cos a*cosh b,-sin a*sinh b)
8.2. sin

8.2.1. sin (a,b) --> (sin a*cosh b,cos a*sinh b)
8.3. tan

8.3.1. tan (a,b) --> sin (a,b)/cos (a,b)
8.4. csc

8.4.1. csc x --> 1/sin x
8.5. sec

8.5.1. sec x --> 1/cos x
8.6. cot

8.6.1. cot x --> 1/tan x
8.7. acos

8.7.1. acos (a,b) --> ((0,-1)*ln ((a,b)+(((((2*a*b)^2)+((1+
(a^2)+-(b^2))^2))^0.25)*(cos (0.5*atan (2*a*b*1/(1+(a^2)+-(b^2)))),sin
(0.5*atan (2*a*b*1/(1+(a^2)+-(b^2))))))))

8.8. asin
8.8.1. asin (a,b) --> ((0,-1)*ln ((-b,a)+(((((2*a*b)^2)+((1+

(a^2)+-(b^2))^2))^0.25)*(cos (0.5*atan (2*a*b*1/(1+(a^2)+-(b^2)))),sin
(0.5*atan (2*a*b*1/(1+(a^2)+-(b^2))))))))

8.9. atan
8.9.1. atan (a,b) --> (((-0.5*ln (((1+-b)^2)+(-a^2)))+(0.5*ln

((a^2)+((1+b)^2)))),(atan ((1+b)*1/a)+atan ((1+-b)*1/a)))
8.10. acsc

8.10.1. acsc x --> asin 1/x
8.11. asec

8.11.1. asec x --> acos 1/x
8.12. acot

8.12.1. acot x --> atan 1/x
8.13. cosh

8.13.1. cosh (a,b) --> ((cos b*cosh a),(sin b*sinh a))
8.14. sinh

8.14.1. sinh (a,b) --> ((cos b*sinh a),(cosh a*sin b))
8.15. tanh

8.15.1. tanh (a,b) --> (((((cos b^2)*cosh a*sinh a)+((sin
b^2)*cosh a*sinh a)),(((cosh a^2)*cos b*sin b)+-((sinh a^2)*cos b*sin
b)))*1/(((cos b*cosh a)^2)+((sin b*sinh a)^2)))

8.16. csch
8.16.1. csch x --> 1/sinh x

8.17. sech
8.17.1. sech x --> 1/cosh x

8.18. coth
8.18.1. coth x --> 1/tanh x

45

8.19. acosh
8.19.1. acosh (a,b) --> ln ((a,b)+(((((2*a*b)^2)+((1+(a^2)+-

(b^2))^2))^0.25)*(cos (0.5*atan (2*a*b*1/(1+(a^2)+-(b^2)))),sin (0.5*atan
(2*a*b*1/(1+(a^2)+-(b^2)))))))

8.20. asinh
8.20.1. asinh (a,b) --> ln ((a,b)+(((((2*a*b)^2)+((1+(a^2)+-

(b^2))^2))^0.25)*(cos (0.5*atan (2*a*b*1/(1+(a^2)+-(b^2)))),sin (0.5*atan
(2*a*b*1/(1+(a^2)+-(b^2)))))))

8.21. atanh
8.21.1. atanh (a,b) --> ((0.5*((-0.5*ln (((1+-a)^2)+(-b^2)))

+(0.5*ln ((b^2)+((1+a)^2))))),(0.5*(atan (b*1/(1+a))+atan (b*1/(1+-a)))))
8.22. acsch

8.22.1. acsch x --> asinh 1/x
8.23. asech

8.23.1. asech x --> acosh 1/x
8.24. acoth

8.24.1. acoth x --> atanh 1/x
9. Relation

9.1. /* any relation with TRUE or FALSE is simplified as such */
10. Calculus

10.1. der
10.1.1. der($?x $?x) --> 1
10.1.2. der(b+...+c $?x) --> der(b $?x)+...+der(c $?x)
10.1.3. der(b*c...*d*e $?x) --> der(b $?x)*c*...*d*e+b*der(c

$?x)*...*d*e+...+b*c*...*d*der(e $?x)
10.1.4. der(-b $?x) --> -der(b $?x)
10.1.5. der(1/b $?x) --> -der(b $?x)/b^2
10.1.6. der(b^c $?x) --> b^c*der(c $?x)*ln b + b^(c-

1)*c*der(b $?x)
10.1.7. der(ln b $?x) --> der(b $?x)/b
10.1.8. der(sin b $?x) --> der(b $?x)*cos b
10.1.9. der(cos b $?x) --> neg der(b $?x)*sin b
10.1.10. der([b ... c] $?x) --> [der(b $?x) ... der(c $?x)]
10.1.11. der(r $?x) /* where r is none of the above cases, and

not a function */ --> 0
10.2. pder

10.2.1. /* same rules, except */
10.2.2. der($?v $?x) /* where v ≠ x */ --> der($?v $?x)

10.3. intg
11. Number Theory

11.1. gcd
11.1.1. gcd(a b c ... d) --> gcd(...(gcd(a b)) c) ... d)
11.1.2. gcd(b c) /* b and c are neither numbers nor functions

*/ --> 1
11.1.3. gcd(b*c d) --> gcd(b d)*gcd(c d)
11.1.4. gcd(b^n d) --> gcd(b d)
11.1.5. gcd(b^n d^m) --> gcd(b d)^min(n m)

11.2. lcm
11.2.1. lcm(x y) --> x*y/gcd(x y)
11.2.2. lcm(x y ... z) --> lcm(lcm(x y) ... z)

12. Misc.
12.1. max

12.1.1. (max p q ...) --> (max q ...)
12.1.2. (max x x) --> (max x)
12.1.3. (max -INF ...) --> (max ...)
12.1.4. (max INF ...) --> INF
12.1.5. a+b-max(a b) --> min(a b)

12.2. min
12.2.1. (min p q ...) --> (min p ...)
12.2.2. (min x x) --> (min x)
12.2.3. (min -INF ...) --> -INF
12.2.4. (min INF ...) --> (min ...)
12.2.5. a+b-min(a b) --> max(a b)

46

12.3. re
12.3.1. re p --> p
12.3.2. re INF --> INF
12.3.3. re -INF --> -INF
12.3.4. re im p --> im p
12.3.5. re (b,c) --> b
12.3.6. re [b ... c] --> [re b ... re c]
12.3.7. re (b+...+c) --> re b+...+re c
12.3.8. re (b*c) --> ((re a*re b)+-(im a*im b))
12.3.9. re (1/b) --> (1/((im a^2)+(re a^2))*re a)
12.3.10. re cos b --> (cos re a*cosh im a)
12.3.11. re sin b --> (cosh im b*sin re b)
12.3.12. re tan b --> (1/(cos (2*re a)+cosh (2*im a))*sin (2*re

a))
12.3.13. re (b^2) --> ((re b^2)+-(im b^2))

12.4. im
12.4.1. im p --> 0
12.4.2. im INF --> 0
12.4.3. im -INF --> 0
12.4.4. im im p --> 0
12.4.5. im re p --> 0
12.4.6. im (b,c) --> c
12.4.7. im [b ... c] --> [im b ... im c]
12.4.8. im (b+...+c) --> im b+...+im c
12.4.9. im (b*c) --> ((im a*re b)+-(im b*re a))
12.4.10. im (1/b) --> -(im a*1/((im a^2)+(re a^2)))
12.4.11. im cos b --> (sin re a*sinh im a)
12.4.12. im sin b --> (cos re a*sinh im a)
12.4.13. im tan b --> (1/(cos (2*re a)+cosh (2*im a))*sinh

(2*im a))
12.4.14. im (b^2) --> (2*im b*re b)

12.5. nPr
12.5.1. nPr(x x) --> 1
12.5.2. nPr(x y) /* where x and y are not integers */ --> x!/y!

12.6. nCr
12.6.1. nCr(x x) --> 1
12.6.2. nCr(x 0) --> 1
12.6.3. nCr(x 1) --> x
12.6.4. nCr(x y) /* where x and y are not integers */ -->

nPr(x,y)/(x-y)!
12.7. sum

12.7.1. sum(?v a b x) /* b < a */ --> sum(?v b a x)
12.7.2. sum(?v a b x) /* x does not contain ?v */ --> (b-a+1)*x
12.7.3. sum(?v a b -x) --> -sum(?v a b x)
12.7.4. sum(?v a b (x*y)) /* x does not contain ?v but y does

*/ --> x*sum(?v a b y)
12.7.5. sum(?v a b ?v) --> (b*(b+1)+a*(1-a))/2

Technical Reference
This section details various operators and describes how they work.
The fzero operator uses an excellent algorithm which minimizes the number of times the

function must be evaluated. It uses the bisection procedure combined with linear or quadratic inverse
interpolation. At each step, both bisection and interpolation approximations are calculated. Whichever
falls within the given interval and lies closest to the middle is deemed the best and is used as the new
approximation. If a is the lower bound, b is the upper bound, and t is the tolerance, then the maximum
number of times the function could be evaluated is ln b−a

1.6t . The fmin operator uses the same
algorithm, but subtracts the desired inverse from the function to make it a zero.

47

The fmin operator uses the gold section procedure combined with parabolic interpolation. At
each step the best of the two is taken, making the maximum number of times the function could be
evaluated ln b−a

1.324t.
The error function and the complementary error function use a table to determine small values,

and call each other to reduce computation on large values. The real to rational engine works by
creating partial fractions to greater and greater depths until the tolerance has been achieved.

The random number algorithm is a combination of a Fibonacci sequence with lags of 97 and 33,
a “subtraction plus one, modulo one” operation, and an arithmetic sequence using subtraction. It has a
period of 2144 (22300745198530623141535718272648361505980416 or about 2.23x1043) and passes
all the tests for random number generation. The initial conditions are picked to maximize the period.
There are algorithms which produce longer periods, but this scores better on randomness tests, and is
very fast, and it is unlikely that the period is too short for some problem. Even if you had a computer
which could generate a trillion of these random numbers every second, the amount of time it would
take to start seeing repeated numbers is longer then the age of the universe about a trillion times over.
In the words of David LaSalle, (see the Writer/Contributor Information and Bibliography chapter for
more information) and with his own capitalization, “THIS IS THE BEST KNOWN RANDOM
NUMBER GENERATOR AVAILABLE. It passes ALL of the tests for random number generators.”
Of course, this was asserted a number of years ago (the exact date is unclear, but it was definitely after
1987 and probably around 1990).

Taking the determinant currently uses a very inefficient but accurate method. It uses expansion
by minors, and therefore the determinant of an n by n matrix takes n! multiplications and ?? additions.
LU factorization or some other decomposition method would be preferable as long as Prometheus
could still maintain constants and other non-numbers in the matrix. Taking the inverse is expensive
mainly due to the inefficient determinants: the inverse of an n by n matrix takes n2 1+(n−1)!()
multiplications and n2ADDITIONS(n−1) additions. The saug operator triangularizes the matrix,
and then works bottom up to build the values for the variables. It is very efficient: for n equations it
uses only n2 −n additions and n2 multiplications.

The gamma operator uses the identity
1

Γ(x)
=xeγx

1+ x
m

e
x
mm=1

∞
∏ where γ is Euler’s constant to

compute the gamma function. However, several changes must be made since the computer cannot loop
to m = ∞, and there are better ways to compute the product which require less computer time. The

form actually used is
1

Γ(x)
=xexb (1+ x

m
m=1

n
∏) where n is a reasonable large number and b =γ − 1

k
k=1

n
∑

(with n =1000000 , b ≈−13.815510057963456). As n→ ∞ , the gamma operator becomes more
accurate, but it takes longer to evaluate. Because this formula converges so slowly, the value is not
very accurate.

For factoring integers, a very fast method is used for numbers with fewer then ten digits.
Otherwise factorization occurs, but more slowly. Any prime factors greater then or equal to 216 +1
(65537) will not be found, and their product will appear as the largest prime factor in the factorization.

48

Case Study
This chapter describes a real world problem which Prometheus is designed to solve. It takes

advantage of the string and list processing commands more then anything else. The problem is you are
trying to pick a good software package to fill some need. The information you have is a large database
of companies and their products with descriptions. This chapter explains the creation and the actual
code for various programs which search and analyze data, and put it into useful formats.

As a first example, let’s make a program which looks for a particular feature in the database and
prints a list of all the products which have that feature. We’ll make a script to accomplish this. Let’s
say the database is in exact count format with four fields: the product, the company, the company’s
address, and the summary of the product. The first thing we need to do is read the database, ignoring
the second and third fields. The first line in the script is:

data = opendb("database" 4 r x x)

Now our database is in the variable data. The next step is to locate all occurrences of the
feature, which we can do with the findall command. We can look for “flexible” with:

loc = findall("flexible" data)

If we examined the contents of loc, we would find a matrix where each row was a found
location consisting of three elements: the first is the row in data this was found, then the element in that
row which will be “2” unless a product name includes the word “flexible”, and then a range giving the
exact location of the word “flexible” in the summary. What we wish to do now is make a list of all the
product names which go along with the hits in loc. We will loop through the elements of loc and build
the list in prod:

// first clear prod in case it is already defined
del prod
for(hit loc)

prod = append(prod data.(hit.1).1)

The last line is constructed as follows: We are accessing the data matrix, and we want the row
containing the product name. The row number can be found in the first element in hit. Then, the first
element of that row is the product name, which we then append to the prod list. Now prod contains a
list of product names which we could print to the screen with the print command:

print prod

Now the script is complete, but let’s put in some bells and whistles. First of all, the database
may not be sorted by product name, so instead of appending the elements to prod, we could insert
them. Also, we could print messages on the screen alerting the user about what the program is doing.
Furthermore, let’s write the product listing to a file on the disk because we want to use that information
elsewhere, or perhaps it’s just too much information to fit on the screen at once. Here is a listing with
all of these changes enacted:

49

print "Reading database...." nl
data = opendb("database" 4 r x x)
print "Finding flexible...." nl
loc = findall("flexible" data)
print "Getting product names...." nl
del $prod
for(hit loc)

prod = insert(prod data.(hit.1).1)
print "Saving to Results.flexible...." nl
savedb(prod "Results.flexible" 1)

We could also make the code a little more understandable. The line in the loop is very
convoluted and it takes some effort to understand what is going on. We could put in a comment to
describe the logic, but there is a better way. Since all we are interested in is the first column of loc,
let’s extract that column in the first place. Then we won’t have to access a specific element of hit. To
do this, we change the loc assignment statement to “loc = col(findall("flexible" data) 1)” and the
looping statement to “prod = insert(prod data.hit.1)”.

Now as an additional feature, let’s make this program more flexible. Instead of always
searching for the word “flexible”, let’s have it get a word from the user, and search for it. The program
would be as follows:

print "Input the word to search for:" nl
word = read
print "Reading database...." nl
data = opendb("database" 4 r x x)
print "Finding " word "..." nl
loc = col(findall(word data) 1)
print "Getting product names...." nl
del $prod
for(hit loc)

prod = insert(prod data.hit.1)
print "Saving to Results." word "...." nl
savedb(prod sorted "Results."+word 1)

This is sufficient for one search term. But what if we want like a report based on a whole list of
search terms We will extend the program to read in a list of search terms from a file and make a report
about the products for each. We’ll call the various search terms “keys,” and the program must now
loop over these keys, making a list of products for each. The list of keys and products, which we wish
to export into a tab-delimited file, will be put in the variable ring. The following listing accomplishes
this, and the messages printed for the user and the comments will be helpful in understanding what is
done at each step:

50

print "Reading database...." nl
data = opendb("database" 4 r x x)
print "Reading key file...." nl
// we flatten this file because keys separated by return carriages will be in
// each row of the keys matrix when we want keys to be a simple list.
keys = sort(flatten(opendb("keys" 1)))
del $ring
for(key keys)

print tb "Finding " key "...." nl
loc = col(findall(key data) 1)
print tb "Getting product names for " key "..." nl
// now we REALLY need to delete prod, because we’re in a loop.
del $prod
for(hit loc)

prod = insert(prod data.hit.1)
// let’s put the key at the beginning for reference in the output,
// after uniquing
prod = prepend(unique(prod sorted) key)
// now we insert prod into ring
ring = insert(ring prod)

print "Saving results...." nl
savedb(ring "Results")

The next program will produce a matrix for use in a spreadsheet or table program. Down the
left side will be product names, and across the top will be terms in the key list. Each cell will contain a
“1” or a “0” indicating the feature is present or not present for a given product. We will be modifying
the previous program to accomplish this. We remove the last line because we are changing the output.
The first thing we need is a list of all the products in the matrix. An easy way to do this is take the first
column of data with “prods = col(data 1)”. However, that might include products which contain no
features in the key list. That might not be a problem, but we could also stick to products with at least
one match in the key list. To do this we need to get the union of all but the first column of the ring
matrix. Also, to make the matrix, it will be more convenient for ring to contain two elements in each
element: the feature and a list of products. To solve both of these problems in one fell swoop, we
delete the prod prepend statement, and the ring insert statement changes to “ring = insert(ring [key
prod])”. Then prods is created by “prods = unique(sort(flatten(col(ring 2))) sorted)”.

So now prods contains a sorted list of all relevant products, and ring contains a matrix of keys
and a list of products containing that key. We will use mat as the final matrix. We can start by
initializing mat to a matrix of 0’s, and then put 1’s according to prods and ring. To initialize, use the
setmat command with the number of rows equal to the size of prods and the number of columns equal
to the size of ring with “mat = setmat(size prods size ring 0)”. Now we must loop through each feature
in ring and for each product listed, mark a 1 in the appropriate element. This is done with the following
code:

for(hit ring)
keyLoc = find(hit.1 keys).1
for(prod hit.2)

prodLoc = find(prod prods).1
mat = putr(mat 1 [prodLoc keyLoc])

51

Of course, there are many variations on this piece of code, all of which do the same job. For
instance, instead of looping through the elements of ring, you could loop with hit being an index in 1..
(size ring) and then keyLoc will be the same as hit. In this case the second for-loop would have to be
modified to loop over “ring.hit.2”, and not just “hit.2”. Also, the assignment of prodLoc and keyLoc
could be eliminated if the find commands were placed in the putr command. This would actually result
in faster and more efficient code because variables take time to process. They were used initially to
provide clarity.

Nonetheless, mat now contains the desired matrix without titles. We can refer to prods to get the
titles of each row and the first column of ring to get the titles of each column of mat. If we wanted to
put these titles into mat to make it more readable, we append the following code:

for(k 1..size(prods))
mat = put(mat prods.k [k 1])

// this isn’t just column 1 of ring because we need to leave a
// blank for the first column in mat which now contains titles.
mat = put(prepend(mat col(ring 1)) "Products" [1 1])

Then a simple “savedb(mat "Matrix_Results")” will write the matrix to spreadsheet-readable
format. Of course, the 1’s and 0’s could be any expression at all, but they were chosen so that further
analysis could be done with mathematics. For example, you could sum a column of mat (without titles)
to get the number of companies with that feature, or you could sum a row of mat (without titles) to get
the number of features a company has.

Now we’ll add some more flexibility to the report. Let’s say that the feature “BOM” and “Bill
of Materials” is the same feature, and therefore we want one column in mat which contains 1’s if either
“BOM” or “Bill of Materials” occurs in a particular product. One strategy is to look for “BOM” and
“Bill of Materials” separately and then combine later, but a more elegant solution can be found with a
key matrix instead of a key list in keys. The key matrix will be a tab-delimited file with the first
element in a data set is the term we want as the title of a column in mat, and the other elements are
synonymous terms. A complete listing of the program with this implemented follows:

52

print "Reading database...." nl
data = opendb("database" 4 r x x)
print "Reading key file...." nl
keys = opendb("keys_with_syn")
del $ring
for(keyList keys)

print tb "Gathering information for " keyList.1 "..." nl
for(key keyList)

print tb tb "Finding " key "...." nl
loc = col(findall(key data) 1)
print tb tb "Getting product names for " key "..." nl
del $prod
for(hit loc)

prod = insert(prod data.hit.1)
ring = insert(ring [keyList.1 unique(prod sorted)])

// this is to make future searches faster since all but column #1
// have been assimilated
keys = sort col(keys 1)
print "Building Matrix...." nl
print tb "Initializing matrix...." nl
prods = unique(sort(flatten(col(ring 2))) sorted)
mat = setmat(size prods size ring 0)
print tb "Processing keys...." nl
for(hit ring)

print tb tb "Processing " hit.1 "...." nl
keyLoc = find(hit.1 keys).1
for(prod hit.2)

prodLoc = find(prod prods).1
mat = putr(mat 1 [prodLoc keyLoc])

print tb "Adding Titles...." nl
for(k 1..size(prods))

mat = put(mat prods.k [k 1])
mat = put(prepend(mat col(ring 1)) "Products" [1 1])
print "Saving Results...." nl
savedb(mat "Results")

Let us now expand this further to include categories of properties. We could say, for example,
that “accounting” could be defined as “accounts receivable” and “invoice.” We have a tab-delimited
file where the first element in a row is the category, and each successive element is a member of that
category. We want to have a matrix output as before, but with categorical columns with breakdowns by
function. So, for example, the first two columns of the matrix would be “accounts receivable” and
“invoice,” and the title of these two columns together would be “accounting.” Let us further assume
that we wish to use the key list with synonyms that was implemented in the last example.

We will need another variable to hold the categories and an addition loop to go through the
category elements. We’ll want to sort the properties within the categories, and sort the categories as a
whole. Plus, if a key in the category does not have a listing in the key list, then no synonyms should be
used. Also, so far we have not been using implicit assignment, but from now on it will be used. The
following listing implements these changes:

53

print "Reading database...." nl
data = opendb("database" 4 r x x)
print "Reading key file...." nl
keys = opendb("keys_with_syn")
print "Reading cat file...." nl
cats = opendb("cat")
del $catList
del $Products
nCols = 0
for(cat cats)

print "Category " cat.1 nl
del $props
for(prop del(cat 1))

print tb "Property " prop nl
f = find(prop keys)
del $prod
if (f)

for(key keys.(f.1))
print tb tb "Key " key nl
loc = col(findall(key data) 1)
for(hit loc)

insert(?prod data.hit.1)
else

print tb tb "Key " prop nl
loc = col(findall(prop data) 1)
for(hit loc)

insert(?prod data.hit.1)
unique(?prod sorted)
flatten(append(?Products prod))
insert(?props [prop prod])

insert(?catList [cat.1 props])
?nCols + size props

print "Building matrix" nl
unique(sort(?Products) sorted)
mat = setmat(2+size Products nCols 0)
c = 1

54

for(cat catList)
print tb "Building category " cat.1 nl
oldc = c
for(prop cat.2)

print tb tb "Building Property " prop.1 nl
putr(?mat "" [1 c])
putr(?mat prop.1 [2 c])
for(comp prop.2)

f = find(comp Products)
putr(?mat 1 [f.1+2 c])

?c+1
putr(?mat cat.1 [1 oldc])

print tb "Attaching Product Titles" nl
put(?mat "" [1 1])
put(?mat "" [2 1])
for(k 1..size(Products))

put(?mat Products.k [k+2 1])
print "Saving Results...." nl
savedb(mat "Results")

The put and putr commands involving “""” place blank space where setmat had initialized with
“0”. The first part of the script folds all the information into lists, sorting as it goes, and when the
matrix is filled, each list is traversed and titles are placed where necessary. The output is ready to be
formatted with a table or spreadsheet program. With this final, complex program, the merits of the
print statement become two-fold: one is alerting the user of progress, convenient in a lengthy
procedure, and the other is providing landmarks which make reading the code a little easier.

There are still other features we could include in the program. For example, we might like to
have the company which produced the product printed alongside it in mat. To do that, we simply write
code mirroring the method of prepending product names to each line in the matrix, except we must first
read the company data from the database:

cData = opendb("database" 4 r r x x)
put(?mat "" [1 1])
put(?mat "" [2 1])
for(k 1..size(Products))

comp = cData.(find(Products.k cData).1).1
put(?mat comp [k+2 1])

If this is inserted before the loop which puts product titles into the matrix, then the program will
run as specified. If it is inserted after that loop, and you sort mat before output, then you can have the
same matrix sorted by company.

This case study focused on the list and string processing facets of Prometheus. The program
listings exemplify the incredible flexibility and ease of use Prometheus provides. Even the very
complex problems took only a handful of lines of code, and forty percent of those lines were just print
statements. Prometheus gives you the power of mathematics and computer science with a few
keystrokes enabling you to solve many kinds of problems with ease.

55

Writer/Contributor Information and Bibliography

The writer, Jason Cohen, is a senior at LBJ High School in Austin, Texas and currently works in
the Analysis and Applied Research Division at Trãcor Aerospace. He wrote all of the over 130,000
lines of C++ code which make up Prometheus. He also devised all the algorithms except those cited
below, translating from FORTRAN where indicated.

The univariate function minimizer engine is based an algorithm from “Brent” (the definitive
source is being located) which in turn is based on the algorithm from G. Forsythe, M. Malcolm, C.
Moler, Computer methods for mathematical computations. M., Mir, 1980, p.202 of the Russian edition.
The univariate function zero locator is also based an algorithm from “Brent” which is in turn based on
an algorithm from the same source, p. 180.

The real to rational converter is based on an algorithm from Jerome Spanier and Keith B.
Oldham, An Atlas of Functions. Springer-Verlag, 1987, pp. 665-7.

The random number generator has a long history. It started in Toward a Universal C Random
Number Generator by George Marsaglia and Arif Zaman. C Florida State University Report: FSU-
SCRI-87-50 (1987). It was later modified by F. James and published in "A Review of Pseudo-C
random Number Generators". David LaSalle of Florida State University created a FORTRAN program
that was translated to C by Jim Butler, and got slightly rewritten before the final insertion into
Prometheus.

The GCD engine for integers less then 231 is based on an algorithm due to J. Stein in 1961 (see
Journal of Computational Physics, 1 (1967), 397-405). See also D. E. Knuth, Seminumerical
Algorithms. The Art of Computer Programming Vol. 2. Addison-Wesley Publishing Company, Reading
Mass, 1981. p. 321.

The error function and complementary error function tabulator is based on an algorithm written
by Robert C. Tausworthe at the Jet Propulsion Laboratory in 1984.

The C-style escape sequence translator is based on an algorithm by Jerry Coffin.

You can visit the Prometheus web cite at:
http://www.aard.tracor.com/Jason/Prometheus/ where you will find support, information, contacts, and

the latest versions of the Prometheus executable and manual. Jason Cohen can be contacted by e–mail
at “jason@tracor.com”. Questions, comments, suggestions, bug alerts, feedback, new ideas and
algorithms, etc. are encouraged!

56

